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Key notions
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Arguments 1

Logic is the business of evaluating arguments; sorting the good from the bad.
In everyday language, we sometimes use the word ‘argument’ to talk about

belligerent shouting matches. Logic is not concerned with such teeth-gnashing
and hair-pulling. They are not arguments, in our sense; they are disagreements.

An argument, as we shall understand it, is something more like this:

It is raining heavily.
If you do not take an umbrella, you will get soaked.

So: You should take an umbrella.

We here have a series of sentences. The word ‘So’ on the third line indicates
that the final sentence expresses the conclusion of the argument. The two
sentences before that express premises of the argument. If you believe the
premises, then the argument (perhaps) provides you with a reason to believe
the conclusion.

This is the sort of thing that logicians are interested in. We shall say that
an argument is any collection of premises, together with a conclusion.

In the example just given, we used individual sentences to express both of
the argument’s premises, and we used a third sentence to express the argu-
ment’s conclusion. Many arguments are expressed in this way. But a single
sentence can contain a complete argument. Consider:

I was wearing my sunglasses; so it must have been sunny.

This argument has one premise followed by a conclusion.
Many arguments start with premises, and end with a conclusion. But not

all of them. The argument with which this section began might equally have
been presented with the conclusion at the beginning, like so:

You should take an umbrella. After all, it is raining heavily. And
if you do not take an umbrella, you will get soaked.

Equally, it might have been presented with the conclusion in the middle:

It is raining heavily. Accordingly, you should take an umbrella,
given that if you do not take an umbrella, you will get soaked.

When approaching an argument, we want to know whether or not the conclu-
sion follows from the premises. So the first thing to do is to separate out the
conclusion from the premises. As a guideline, the following words are often
used to indicate an argument’s conclusion:
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1. Arguments 3

so, therefore, hence, thus, accordingly, consequently

And these expressions often indicate that we are dealing with a premise, rather
than a conclusion

since, because, given that

But in analysing an argument, there is no substitute for a good nose.

Practice exercises

At the end of some sections, there are problems that review and explore the
material covered in the chapter. There is no substitute for actually working
through some problems, because logic is more about a way of thinking than it
is about memorising facts.

Highlight the phrase which expresses the conclusion of each of these arguments:

1. It is sunny. So I should take my sunglasses.
2. It must have been sunny. I did wear my sunglasses, after all.
3. No one but you has had their hands in the cookie-jar. And the scene of

the crime is littered with cookie-crumbs. You’re the culprit!
4. Miss Scarlett and Professor Plum were in the study at the time of the

murder. And Reverend Green had the candlestick in the ballroom, and
we know that there is no blood on his hands. Hence Colonel Mustard did
it in the kitchen with the lead-piping. Recall, after all, that the gun had
not been fired.



Valid arguments 2

In §1, we gave a very permissive account of what an argument is. To see just
how permissive it is, consider the following:

There is a bassoon-playing dragon in the Cathedra Romana.
So: Salvador Dali was a poker player.

We have been given a premise and a conclusion. So we have an argument.
Admittedly, it is a terrible argument. But it is still an argument.

2.1 Two ways that arguments can go wrong

It is worth pausing to ask what makes the argument so weak. In fact, there
are two sources of weakness. First: the argument’s (only) premise is obviously
false. The Pope’s throne is only ever occupied by a hat-wearing man. Second:
the conclusion does not follow from the premise of the argument. Even if there
were a bassoon-playing dragon in the Pope’s throne, we would not be able to
draw any conclusion about Dali’s predilection for poker.

What about the main argument discussed in §1? The premises of this
argument might well be false. It might be sunny outside; or it might be that
you can avoid getting soaked without taking an umbrella. But even if both
premises were true, it does not necessarily show you that you should take an
umbrella. Perhaps you enjoy walking in the rain, and you would like to get
soaked. So, even if both premises were true, the conclusion might nonetheless
be false.

The general point is as follows. For any argument, there are two ways that
it might go wrong:

• One or more of the premises might be false.
• The conclusion might not follow from the premises.

To determine whether or not the premises of an argument are true is often a
very important matter. But that is normally a task best left to experts in the
field: as it might be, historians, scientists, or whomever. In our role as logicians,
we are more concerned with arguments in general. So we are (usually) more
concerned with the second way in which arguments can go wrong.

So: we are interested in whether or not a conclusion follows from some
premises. Don’t, though, say that the premises infer the conclusion. Entail-
ment is a relation between premises and conclusions; inference is something we
do. (So if you want to mention inference when the conclusion follows from the
premises, you could say that one may infer the conclusion from the premises.)

4



2. Valid arguments 5

2.2 Validity

As logicians, we want to be able to determine when the conclusion of an argu-
ment follows from the premises. One way to put this is as follows. We want to
know whether, if all the premises were true, the conclusion would also have to
be true. This motivates a definition:

An argument is valid if and only if it is impossible for all of the
premises to be true and the conclusion false.

The crucial thing about a valid argument is that it is impossible for the premises
to be true whilst the conclusion is false. Consider this example:

Oranges are either fruits or musical instruments.
Oranges are not fruits.

So: Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it follows from the
premises. If both premises were true, then the conclusion just has to be true.
So the argument is valid.

This highlights that valid arguments do not need to have true premises or
true conclusions. Conversely, having true premises and a true conclusion is not
enough to make an argument valid. Consider this example:

London is in England.
Beijing is in China.

So: Paris is in France.

The premises and conclusion of this argument are, as a matter of fact, all true.
But the argument is invalid. If Paris were to declare independence from the rest
of France, then the conclusion would be false, even though both of the premises
would remain true. Thus, it is possible for the premises of this argument to be
true and the conclusion false. The argument is therefore invalid.

The important thing to remember is that validity is not about the actual
truth or falsity of the sentences in the argument. It is about whether it is
possible for all the premises to be true and the conclusion false. Nonetheless,
we shall say that an argument is sound if and only if it is both valid and all
of its premises are true.

2.3 Inductive arguments

Many good arguments are invalid. Consider this one:

In January 1997, it rained in London.
In January 1998, it rained in London.
In January 1999, it rained in London.
In January 2000, it rained in London.

So: It rains every January in London.

This argument generalises from observations about several cases to a conclu-
sion about all cases. Such arguments are called inductive arguments. The
argument could be made stronger by adding additional premises before draw-
ing the conclusion: In January 2001, it rained in London; In January 2002. . . .



2. Valid arguments 6

But, however many premises of this form we add, the argument will remain
invalid. Even if it has rained in London in every January thus far, it remains
possible that London will stay dry next January.

The point of all this is that inductive arguments—even good inductive
arguments—are not (deductively) valid. They are not watertight. Unlikely
though it might be, it is possible for their conclusion to be false, even when
all of their premises are true. In this book, we shall set aside (entirely) the
question of what makes for a good inductive argument. Our interest is simply
in sorting the (deductively) valid arguments from the invalid ones.

Practice exercises

A. Which of the following arguments are valid? Which are invalid?

1. Socrates is a man.
2. All men are carrots.

So: Therefore, Socrates is a carrot.

1. Abe Lincoln was either born in Illinois or he was once president.
2. Abe Lincoln was never president.

So: Abe Lincoln was born in Illinois.

1. If I pull the trigger, Abe Lincoln will die.
2. I do not pull the trigger.

So: Abe Lincoln will not die.

1. Abe Lincoln was either from France or from Luxemborg.
2. Abe Lincoln was not from Luxemborg.

So: Abe Lincoln was from France.

1. If the world were to end today, then I would not need to get up tomorrow
morning.

2. I will need to get up tomorrow morning.
So: The world will not end today.

1. Joe is now 19 years old.
2. Joe is now 87 years old.

So: Bob is now 20 years old.

B. Could there be:

1. A valid argument that has one false premise and one true premise?
2. A valid argument that has only false premises?
3. A valid argument with only false premises and a false conclusion?
4. A sound argument with a false conclusion?
5. An invalid argument that can be made valid by the addition of a new

premise?
6. A valid argument that can be made invalid by the addition of a new

premise?

In each case: if so, give an example; if not, explain why not.



Other logical notions 3

In §2, we introduced the idea of a valid argument. We will want to introduce
some more ideas that are important in logic.

3.1 Truth values

As we said in §1, arguments consist of premises and a conclusion. Note that
many kinds of English sentence cannot be used to express premises or conclu-
sions of arguments. For example:

• Questions, e.g. ‘are you feeling sleepy?’
• Imperatives, e.g. ‘Wake up!’
• Exclamations, e.g. ‘Ouch!’

The common feature of these three kinds of sentence is that they are not
assertoric: they cannot be true or false. It does not even make sense to ask
whether a question is true (it only makes sense to ask whether the answer to
a question is true).

The general point is that, the premises and conclusion of an argument must
be capable of having a truth value. And the two truth values that concern
us are just True and False.

3.2 Consistency

Consider these two sentences:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is taller than her.

Logic alone cannot tell us which, if either, of these sentences is true. Yet we
can say that if the first sentence (B1) is true, then the second sentence (B2)
must be false. And if B2 is true, then B1 must be false. It is impossible that
both sentences are true together. These sentences are inconsistent with each
other. And this motivates the following definition:

Sentences are jointly consistent if and only if it is possible for
them all to be true together.

Conversely, B1 and B2 are jointly inconsistent.
We can ask about the consistency of any number of sentences. For example,

consider the following four sentences:
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3. Other logical notions 8

G1. There are at least four giraffes at the wild animal park.
G2. There are exactly seven gorillas at the wild animal park.
G3. There are not more than two martians at the wild animal park.
G4. Every giraffe at the wild animal park is a martian.

G1 and G4 together entail that there are at least four martian giraffes at the
park. This conflicts with G3, which implies that there are no more than two
martian giraffes there. So the sentences G1–G4 are jointly inconsistent. They
cannot all be true together. (Note that the sentences G1, G3 and G4 are jointly
inconsistent. But if sentences are already jointly inconsistent, adding an extra
sentence to the mix will not make them consistent!)

3.3 Necessity and contingency

In assessing arguments for validity, we care about what would be true if the
premises were true. But some sentences just must be true. Consider these
sentences:

1. It is raining.
2. Either it is raining here, or it is not.
3. It is both raining here and not raining here.

In order to know if sentence 1 is true, you would need to look outside or check
the weather channel. It might be true; it might be false.

Sentence 2 is different. You do not need to look outside to know that it is
true. Regardless of what the weather is like, it is either raining or it is not.
That is a necessary truth.

Equally, you do not need to check the weather to determine whether or not
sentence 3 is true. It must be false, simply as a matter of logic. It might be
raining here and not raining across town; it might be raining now but stop
raining even as you finish this sentence; but it is impossible for it to be both
raining and not raining in the same place and at the same time. So, whatever
the world is like, it is not both raining here and not raining here. It is a
necessary falsehood.

Something which is capable of being true or false, but which is neither
necessarily true nor necessarily false, is contingent.

Practice exercises

A. For each of the following: Is it necessarily true, necessarily false, or contin-
gent?

1. Caesar crossed the Rubicon.
2. Someone once crossed the Rubicon.
3. No one has ever crossed the Rubicon.
4. If Caesar crossed the Rubicon, then someone has.
5. Even though Caesar crossed the Rubicon, no one has ever crossed the

Rubicon.
6. If anyone has ever crossed the Rubicon, it was Caesar.
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B. Look back at the sentences G1–G4 in this section (about giraffes, gorillas
and martians in the wild animal park), and consider each of the following:

1. G2, G3, and G4
2. G1, G3, and G4
3. G1, G2, and G4
4. G1, G2, and G3

Which are jointly consistent? Which are jointly inconsistent?

C. Could there be:

1. A valid argument, the conclusion of which is necessarily false?
2. An invalid argument, the conclusion of which is necessarily true?
3. Jointly consistent sentences, one of which is necessarily false?
4. Jointly inconsistent sentences, one of which is necessarily true?

In each case: if so, give an example; if not, explain why not.



Chapter 2

Truth-functional logic
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First steps to symbolisation 4

4.1 Validity in virtue of form

Consider this argument:

It is raining outside.
If it is raining outside, then Jenny is miserable.

So: Jenny is miserable.

and another argument:

Jenny is an anarcho-syndicalist.
If Jenny is an anarcho-syndicalist, then Dipan is an avid reader of Tolstoy.

So: Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in which we can
say that they share a common structure. We might express the structure thus:

A
If A, then C

So: C

This looks like an excellent argument structure. Indeed, surely any argument
with this structure will be valid. And this is not the only good argument
structure. Consider an argument like:

Jenny is either happy or sad.
Jenny is not happy.

So: Jenny is sad.

Again, this is a valid argument. The structure here is something like:

A or B
not-A

So: B

A superb structure! And here is a final example:

It’s not the case that Jim both studied hard and acted in lots of plays.
Jim studied hard

So: Jim did not act in lots of plays.

This valid argument has a structure which we might represent thus:

11



4. First steps to symbolisation 12

not-(A and B)
A

So: not-B

The examples illustrate an important idea, which we might describe as validity
in virtue of form. The validity of the arguments just considered has nothing
very much to do with the meanings of English expressions like ‘Jenny is mis-
erable’, ‘Dipan is an avid reader of Tolstoy’, or ‘Jim acted in lots of plays’. If
it has to do with meanings at all, it is with the meanings of phrases like ‘and’,
‘or’, ‘not,’ and ‘if. . . , then. . . ’.

In this chapter, we are going to develop a formal language which allows us
to symbolise many arguments in such a way as to show that they are valid in
virtue of their form. That language will be truth-functional logic, or TFL.

4.2 Validity for special reasons

There are plenty of arguments that are valid, but not for reasons relating to
their form. Take an example:

Juanita is a vixen
So: Juanita is a fox

It is impossible for the premise to be true and the conclusion false. So the
argument is valid. But the validity is not related to the form of the argument.
Here is an invalid argument with the same form:

Juanita is a vixen
So: Juanita is a cathedral

This might suggest that the validity of the first argument is keyed to the
meaning of the words ‘vixen’ and ‘fox’. But, whether or not that is right, it
is not simply the shape of the argument that makes it valid. Equally, consider
the argument:

The sculpture is green all over.
So: The sculpture is not red all over.

Again, it seems impossible for the premise to be true and the conclusion false,
for nothing can be both green all over and red all over. So the argument is
valid. But here is an invalid argument with the same form:

The sculpture is green all over.
So: The sculpture is not shiny all over.

The argument is invalid, since it is possible to be green all over and shiny all
over. (I might paint my nails with an elegant shiny green varnish.) Plausibly,
the validity of the first argument is keyed to the way that colours (or colour-
words) interact. But, whether or not that is right, it is not simply the shape
of the argument that makes it valid.

The important moral can be stated as follows. At best, TFL will help us to
understand arguments that are valid due to their form.
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4.3 Atomic sentences

I started isolating the form of an argument, in §4.1, by replacing subsentences
of sentences with individual letters. Thus in the first example of this section,
‘it is raining outside’ is a subsentence of ‘If it is raining outside, then Jenny is
miserable’, and we replaced this subsentence with ‘A’.

Our artificial language, TFL, pursues this idea absolutely ruthlessly. We
start with some atomic sentences. These will be the basic building blocks out
of which more complex sentences are built. We will use uppercase italic letters
for atomic sentences of TFL. There are only twenty-six letters of the alphabet,
but there is no limit to the number of atomic sentences that we might want to
consider. By adding subscripts to letters, we obtain new atomic sentences. So,
here are five different atomic sentences of TFL:

A,P, P1, P2, A234

We shall use atomic sentence to represent, or symbolise, certain English sen-
tences. To do this, we provide a symbolisation key, such as the following:

A: It is raining outside
C: Jenny is miserable

In doing this, we are not fixing this symbolisation once and for all. We are just
saying that, for the time being, we shall think of the atomic sentence of TFL,
‘A’, as symbolising the English sentence ‘It is raining outside’, and the atomic
sentence of TFL, ‘C’, as symbolising the English sentence ‘Jenny is miserable.
Later, when we are dealing with different sentences or different arguments, we
can provide a new symbolisation key; as it might be:

A: Jenny is an anarcho-syndicalist
C: Dipan is an avid reader of Tolstoy

But it is important to understand that whatever structure an English sentence
might have is lost when it is symbolised by an atomic sentence of TFL. From
the point of view of TFL, an atomic sentence is just a letter. It can be used to
build more complex sentences, but it cannot be taken apart.
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In the previous section, we considered symbolising fairly basic English sentences
with atomic sentences of TFL. This leaves us wanting to deal with the English
expressions ‘and’, ‘or’, ‘not’, and so forth. These are connectives—they can be
used to form new sentences out of old ones. And in TFL, we shall make use of
logical connectives to build complex sentences from atomic components. There
are five logical connectives in TFL. This table summarises them, and they are
explained throughout this section.

symbol what it is called rough meaning
¬ negation ‘It is not the case that. . .’
∧ conjunction ‘Both. . . and . . .’
∨ disjunction ‘Either. . . or . . .’
→ conditional ‘If . . . then . . .’
↔ biconditional ‘. . . if and only if . . .’

5.1 Negation

Consider how we might symbolise these sentences:

1. Mary is in Barcelona.
2. It is not the case that Mary is in Barcelona.
3. Mary is not in Barcelona.

In order to symbolise sentence 1, we will need an atomic sentence. We might
offer this symbolisation key:

B: Mary is in Barcelona.

Since sentence 2 is obviously related to the sentence 1, we shall not want to
symbolise it with a completely different sentence. Roughly, sentence 2 means
something like ‘It is not the case that B’. In order to symbolise this, we need
a symbol for negation. We will use ‘¬’. Now we can symbolise sentence 2 with
‘¬B’.

Sentence 3 also contains the word ‘not’. And it is obviously equivalent to
sentence 2. As such, we can also symbolise it with ‘¬B’.

A sentence can be symbolised as ¬A if it can be paraphrased in
English as ‘It is not the case that. . . ’.

It will help to offer a few more examples:

14
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4. The widget can be replaced if it breaks.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Let us use the following representation key:

R: The widget is replaceable

Sentence 4 can now be symbolised by ‘R’. Moving on to sentence 5: saying
the widget is irreplaceable means that it is not the case that the widget is
replaceable. So even though sentence 5 does not contain the word ‘not’, we
shall symbolise it as follows: ‘¬R’.

Sentence 6 can be paraphrased as ‘It is not the case that the widget is
irreplaceable.’ Which can again be paraphrased as ‘It is not the case that it
is not the case that the widget is replaceable’. So we might symbolise this
English sentence with the TFL sentence ‘¬¬R’.

But some care is needed when handling negations. Consider:

7. Jane is happy.
8. Jane is unhappy.

If we let the TFL-sentence ‘H’ symbolise ‘Jane is happy’, then we can symbolise
sentence 7 as ‘H’. However, it would be a mistake to symbolise sentence 8 with
‘¬H’. If Jane is unhappy, then she is not happy; but sentence 8 does not mean
the same thing as ‘It is not the case that Jane is happy’. Jane might be neither
happy nor unhappy; she might be in a state of blank indifference. In order to
symbolise sentence 8, then, we would need a new atomic sentence of TFL.

5.2 Conjunction

Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and Barbara is also athletic.

We will need separate atomic sentences of TFL to symbolise sentences 9 and
10; perhaps

A: Adam is athletic.
B: Barbara is athletic.

Sentence 9 can now be symbolised as ‘A’, and sentence 10 can be symbolised as
‘B’. Sentence 11 roughly says ‘A and B’. We need another symbol, to deal with
‘and’. We will use ‘∧’. Thus we will symbolise it as ‘(A∧B)’. This connective
is called conjunction. We also say that ‘A’ and ‘B’ are the two conjuncts
of the conjunction ‘(A ∧B)’.

Notice that we make no attempt to symbolise the word ‘also’ in sentence
11. Words like ‘both’ and ‘also’ function to draw our attention to the fact that
two things are being conjoined. Maybe they affect the emphasis of a sentence.
But we will not (and cannot) symbolise such things in TFL.

Some more examples will bring out this point:



5. Connectives 16

12. Barbara is athletic and energetic.
13. Barbara and Adam are both athletic.
14. Although Barbara is energetic, she is not athletic.
15. Adam is athletic, but Barbara is more athletic than him.

Sentence 12 is obviously a conjunction. The sentence says two things (about
Barbara). In English, it is permissible to refer to Barbara only once. It might be
tempting to think that we need to symbolise sentence 12 with something along
the lines of ‘B and energetic’. This would be a mistake. Once we symbolise
part of a sentence as ‘B’, any further structure is lost. ‘B’ is an atomic sentence
of TFL. Conversely, ‘energetic’ is not an English sentence at all. What we are
aiming for is something like ‘B and Barbara is energetic’. So we need to add
another sentence letter to the symbolisation key. Let ‘E’ symbolise ‘Barbara
is energetic’. Now the entire sentence can be symbolised as ‘(B ∧ E)’.

Sentence 13 says one thing about two different subjects. It says of both
Barbara and Adam that they are athletic, and in English we use the word
‘athletic’ only once. The sentence can be paraphrased as ‘Barbara is athletic,
and Adam is athletic’. We can symbolise this in TFL as ‘(B ∧ A)’, using the
same symbolisation key that we have been using.

Sentence 14 is slightly more complicated. The word ‘although’ sets up a
contrast between the first part of the sentence and the second part. Neverthe-
less, the sentence tells us both that Barbara is energetic and that she is not
athletic. In order to make each of the conjuncts an atomic sentence, we need
to replace ‘she’ with ‘Barbara’. So we can paraphrase sentence 14 as, ‘Both
Barbara is energetic, and Barbara is not athletic’. The second conjunct con-
tains a negation, so we paraphrase further: ‘Both Barbara is energetic and it
is not the case that Barbara is athletic’. And now we can symbolise this with
the TFL sentence ‘(E ∧ ¬B)’. Note that we have lost all sorts of nuance in
this symbolisation. There is a distinct difference in tone between sentence 14
and ‘Both Barbara is energetic and it is not the case that Barbara is athletic’.
TFL does not (and cannot) preserve these nuances.

Sentence 15 raises similar issues. There is a contrastive structure, but this
is not something that TFL can deal with. So we can paraphrase the sentence
as ‘Both Adam is athletic, and Barbara is more athletic than Adam’. (Notice
that we once again replace the pronoun ‘him’ with ‘Adam’.) How should we
deal with the second conjunct? We already have the sentence letter ‘A’, which
is being used to symbolise ‘Adam is athletic’, and the sentence ‘B’ which is
being used to symbolise ‘Barbara is athletic’; but neither of these concerns
their relative athleticity. So, to to symbolise the entire sentence, we need a
new sentence letter. Let the TFL sentence ‘R’ symbolise the English sentence
‘Barbara is more athletic than Adam’. Now we can symbolise sentence 15 by
‘(A ∧R)’.

A sentence can be symbolised as (A ∧ B) if it can be paraphrased
in English as ‘Both. . . , and. . . ’, or as ‘. . . , but . . . ’, or as ‘although
. . . , . . . ’.

You might be wondering why I am putting brackets around the conjunctions.
The reason for this is brought out by considering how negation might interact
with conjunction. Consider:
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16. It’s not the case that you will get both soup and salad.
17. You will not get soup but you will get salad.

Sentence 16 can be paraphrased as ‘It is not the case that: both you will get
soup and you will get salad’. Using this symbolisation key:

S1: You get soup.
S2: You get salad.

We would symbolise ‘both you will get soup and you will get salad’ as ‘(S1∧S2)’.
To symbolise sentence 16, then, we simply negate the whole sentence, thus:
‘¬(S1 ∧ S2)’.

Sentence 17 is a conjunction: you will not get soup, and you will get salad.
‘You will not get soup’ is symbolised by ‘¬S1’. So to symbolise sentence 17
itself, we offer ‘(¬S1 ∧ S2)’.

These English sentences are very different, and their symbolisations differ
accordingly. In one of them, the entire conjunction is negated. In the other,
just one conjunct is negated. Brackets help us to keep track of things like the
scope of the negation.

5.3 Disjunction

Consider these sentences:

18. Either Denison will play golf with me, or he will watch movies.
19. Either Denison or Ellery will play golf with me.

For these sentences we can use this symbolisation key:

D: Denison will play golf with me.
E: Ellery will play golf with me.
M : Denison will watch movies.

However, we shall again need to introduce a new symbol. Sentence 18 is sym-
bolised by ‘(D ∨M)’. The connective is called disjunction. We also say that
‘D’ and ‘M ’ are the disjuncts of the disjunction ‘(D ∨M)’.

Sentence 19 is only slightly more complicated. There are two subjects, but
the English sentence only gives the verb once. However, we can paraphrase
sentence 19 as ‘Either Denison will play golf with me, or Ellery will play golf
with me’. Now we can obviously symbolise it by ‘(D ∨ E)’ again.

A sentence can be symbolised as (A ∨ B) if it can be paraphrased
in English as ‘Either. . . , or. . . .’ Each of the disjuncts must be a
sentence.

Sometimes in English, the word ‘or’ excludes the possibility that both disjuncts
are true. This is called an exclusive or. An exclusive or is clearly intended
when it says, on a restaurant menu, ‘Entrees come with either soup or salad’:
you may have soup; you may have salad; but, if you want both soup and salad,
then you have to pay extra.

At other times, the word ‘or’ allows for the possibility that both disjuncts
might be true. This is probably the case with sentence 19, above. I might
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play golf with Denison, with Ellery, or with both Denison and Ellery. Sentence
19 merely says that I will play with at least one of them. This is called an
inclusive or. The TFL symbol ‘∨’ always symbolises an inclusive or.

It might help to see negation interact with disjunction. Consider:

20. Either you will not have soup, or you will not have salad.
21. You will have neither soup nor salad.
22. You get either soup or salad, but not both.

Using the same symbolisation key as before, sentence 20 can be paraphrased
in this way: ‘Either it is not the case that you get soup, or it is not the case
that you get salad’. To symbolise this in TFL, we need both disjunction and
negation. ‘It is not the case that you get soup’ is symbolised by ‘¬S1’. ‘It is
not the case that you get salad’ is symbolised by ‘¬S2’. So sentence 20 itself is
symbolised by ‘(¬S1 ∨ ¬S2)’.

Sentence 21 also requires negation. It can be paraphrased as, ‘It is not the
case that either you get soup or you get salad’. Since this negates the entire
disjunction, we symbolise sentence 21 with ‘¬(S1 ∨ S2)’.

Sentence 22 is an exclusive or. We can break the sentence into two parts.
The first part says that you get one or the other. We symbolise this as ‘(S1 ∨
S2)’. The second part says that you do not get both. We can paraphrase
this as: ‘It is not the case both that you get soup and that you get salad’.
Using both negation and conjunction, we symbolise this with ‘¬(S1 ∧ S2)’.
Now we just need to put the two parts together. As we saw above, ‘but’
can usually be symbolised with ‘∧’. Sentence 22 can thus be symbolised as
‘((S1 ∨ S2) ∧ ¬(S1 ∧ S2))’.

This last example shows something important. Although the TFL symbol
‘∨’ always symbolises inclusive or, we can symbolise an exclusive or in TFL.
We just have to use a few of our other symbols as well.

5.4 Conditional

Consider these sentences:

23. If Jean is in Paris, then Jean is in France.
24. Jean is in France only if Jean is in Paris.

Let’s use the following symbolisation key:

P : Jean is in Paris.
F : Jean is in France

Sentence 23 is roughly of this form: ‘if P, then F’. We will use the symbol ‘→’
to symbolise this ‘if. . . , then. . . ’ structure. So we symbolise sentence 23 by
‘(P → F )’. The connective is called the conditional. Here, ‘P ’ is called the
antecedent of the conditional ‘(P → F )’, and ‘F ’ is called the consequent.

Sentence 24 is also a conditional. Since the word ‘if’ appears in the second
half of the sentence, it might be tempting to symbolise this in the same way
as sentence 23. That would be a mistake. My knowledge of geography tells
me that sentence 23 is unproblematically true: there is no way for Jean to
be in Paris that doesn’t involve Jean being in France. But sentence 24 is not
so straightforward: were Jean in Dieppe, Lyons, or Toulouse, Jean would be
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in France without being in Paris, thereby rendering sentence 24 false. Since
geography alone dictates the truth of sentence 23, whereas travel plans (say)
are needed to know the truth of sentence 24, they must mean different things.

In fact, sentence 24 can be paraphrased as ‘If Jean is in France, then Jean
is in Paris’. So we can symbolise it by ‘(F → P )’.

A sentence can be symbolised as A → B if it can be paraphrased
in English as ‘If A, then B’ or ‘A only if B’.

In fact, many English expressions can be represented using the conditional.
Consider:

25. For Jean to be in Paris, it is necessary that Jean be in France.
26. It is a necessary condition on Jean’s being in Paris that she be in France.
27. For Jean to be in France, it is sufficient that Jean be in Paris.
28. It is a sufficient condition on Jean’s being in France that she be in Paris.

If we think really hard, all four of these sentences mean the same as ‘If Jean is
in Paris, then Jean is in France’. So they can all be symbolised by ‘P → F ’.

It is important to bear in mind that the connective ‘→’ tells us only that,
if the antecedent is true, then the consequent is true. It says nothing about a
causal connection between two events (for example). In fact, we lose a huge
amount when we use ‘→’ to symbolise English conditionals. We shall return
to this in §§9.3 and 11.5.

5.5 Biconditional

Consider these sentences:

29. Shergar is a horse only if it he is a mammal
30. Shergar is a horse if he is a mammal
31. Shergar is a horse if and only if he is a mammal

We shall use the following symbolisation key:

H: Shergar is a horse
M : Shergar is a mammal

Sentence 29, for reasons discussed above, can be symbolised by ‘H → M ’.
Sentence 30 is importantly different. It can be paraphrased as, ‘If Shergar

is a mammal then Shergar is a horse’. So it can be symbolised by ‘M → H’.
Sentence 31 says something stronger than either 29 or 30. It can be para-

phrased as ‘Shergar is a horse if he is a mammal, and Shergar is a horse only if
Shergar is a mammal’. This is just the conjunction of sentences 29 and 30. So
we can symbolise it as ‘(H → M)∧ (M → H)’. We call this a biconditional,
because it entails the conditional in both directions.

We could treat every biconditional this way. So, just as we do not need a
new TFL symbol to deal with exclusive or, we do not really need a new TFL
symbol to deal with biconditionals. However, we will use ‘↔’ to symbolise
the biconditional. So we can symbolise sentence 31 with the TFL sentence
‘H ↔ M ’.
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The expression ‘if and only if’ occurs a lot in philosophy and logic. For
brevity, we can abbreviate it with the snappier word ‘iff’. I shall follow this
practice. So ‘if’ with only one ‘f’ is the English conditional. But ‘iff’ with two
’f’s is the English biconditional. Armed with this we can say:

A sentence can be symbolised as A ↔ B if it can be paraphrased
in English as ‘A iff B’; that is, as ‘A if and only if B’.

A word of caution. Ordinary speakers of English often use ‘if . . . , then. . . ’ when
they really mean to use something more like ‘. . . if and only if . . . ’. Perhaps
your parents told you, when you were a child: ‘if you don’t eat your greens,
you won’t get any pudding’. Suppose you ate your greens, but that your
parents refused to give you any pudding, on the grounds that they were only
committed to the conditional (roughly ‘if you get pudding, then you will have
eaten your greens’), rather than the biconditional (roughly, ‘you get pudding
iff you eat your greens’). Well, a tantrum would rightly ensue. So, be aware of
this when interpreting people; but in your own writing, make sure you use the
biconditional iff you mean to.

5.6 Unless

We have now introduced all of the connectives of TFL. We can use them to-
gether to symbolise many kinds of sentences. But a typically nasty case is when
we use the English-language connective ‘unless’:

32. Unless you wear a jacket, you will catch cold.
33. You will catch cold unless you wear a jacket.

These two sentences are clearly equivalent. To symbolise them, we shall use
the symbolisation key:

J : You will wear a jacket.
D: You will catch a cold.

Both sentences mean that if you do not wear a jacket, then you will catch cold.
With this in mind, we might symbolise them as ‘¬J → D’.

Equally, both sentences mean that if you do not catch a cold, then you must
have worn a jacket. With this in mind, we might symbolise them as ‘¬D → J ’.

Equally, both sentences mean that either you will wear a jacket or you will
catch a cold. With this in mind, we might symbolise them as ‘J ∨D’.

All three are correct symbolisations. Indeed, in chapter 3 we shall see that
all three symbolisations are equivalent in TFL.

If a sentence can be paraphrased as ‘Unless A, B,’ then it can be
symbolised as ‘A ∨ B ’.

Again, though, there is a little complication. ‘Unless’ can be symbolised as a
conditional; but as I said above, people often use the conditional (on its own)
when they mean to use the biconditional. Equally, ‘unless’ can be symbolised as
a disjunction; but there are two kinds of disjunction (exclusive and inclusive).
So it will not surprise you to discover that ordinary speakers of English often
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use ‘unless’ to mean something more like the biconditional, or like exclusive
disjunction. Suppose I say: ‘I shall go running unless it rains’. I probably mean
something like ‘I shall go running iff it does not rain’ (i.e. the biconditional), or
‘either I shall go running or it will rain, but not both’ (i.e. exclusive disjunction).
Again: be aware of this when interpreting what other people have said, but be
precise in your writing, unless you want to be deliberately ambiguous.

Practice exercises

A. Using the symbolisation key given, symbolise each English sentence in TFL.

M : Those creatures are men in suits.
C: Those creatures are chimpanzees.
G: Those creatures are gorillas.

1. Those creatures are not men in suits.
2. Those creatures are men in suits, or they are not.
3. Those creatures are either gorillas or chimpanzees.
4. Those creatures are neither gorillas nor chimpanzees.
5. If those creatures are chimpanzees, then they are neither gorillas nor men

in suits.
6. Unless those creatures are men in suits, they are either chimpanzees or

they are gorillas.

B. Using the symbolisation key given, symbolise each English sentence in TFL.

A: Mister Ace was murdered.
B: The butler did it.
C: The cook did it.
D: The Duchess is lying.
E: Mister Edge was murdered.
F : The murder weapon was a frying pan.

1. Either Mister Ace or Mister Edge was murdered.
2. If Mister Ace was murdered, then the cook did it.
3. If Mister Edge was murdered, then the cook did not do it.
4. Either the butler did it, or the Duchess is lying.
5. The cook did it only if the Duchess is lying.
6. If the murder weapon was a frying pan, then the culprit must have been

the cook.
7. If the murder weapon was not a frying pan, then the culprit was either

the cook or the butler.
8. Mister Ace was murdered if and only if Mister Edge was not murdered.
9. The Duchess is lying, unless it was Mister Edge who was murdered.

10. If Mister Ace was murdered, he was done in with a frying pan.
11. Since the cook did it, the butler did not.
12. Of course the Duchess is lying!

C. Using the symbolisation key given, symbolise each English sentence in TFL.

E1: Ava is an electrician.
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E2: Harrison is an electrician.
F1: Ava is a firefighter.
F2: Harrison is a firefighter.
S1: Ava is satisfied with her career.
S2: Harrison is satisfied with his career.

1. Ava and Harrison are both electricians.
2. If Ava is a firefighter, then she is satisfied with her career.
3. Ava is a firefighter, unless she is an electrician.
4. Harrison is an unsatisfied electrician.
5. Neither Ava nor Harrison is an electrician.
6. Both Ava and Harrison are electricians, but neither of them find it satis-

fying.
7. Harrison is satisfied only if he is a firefighter.
8. If Ava is not an electrician, then neither is Harrison, but if she is, then

he is too.
9. Ava is satisfied with her career if and only if Harrison is not satisfied with

his.
10. If Harrison is both an electrician and a firefighter, then he must be sat-

isfied with his work.
11. It cannot be that Harrison is both an electrician and a firefighter.
12. Harrison and Ava are both firefighters if and only if neither of them is an

electrician.

D. Give a symbolisation key and symbolise the following English sentences in
TFL.

1. Alice and Bob are both spies.
2. If either Alice or Bob is a spy, then the code has been broken.
3. If neither Alice nor Bob is a spy, then the code remains unbroken.
4. The German embassy will be in an uproar, unless someone has broken

the code.
5. Either the code has been broken or it has not, but the German embassy

will be in an uproar regardless.
6. Either Alice or Bob is a spy, but not both.

E. Give a symbolisation key and symbolise the following English sentences in
TFL.

1. If there is food to be found in the pridelands, then Rafiki will talk about
squashed bananas.

2. Rafiki will talk about squashed bananas unless Simba is alive.
3. Rafiki will either talk about squashed bananas or he won’t, but there is

food to be found in the pridelands regardless.
4. Scar will remain as king if and only if there is food to be found in the

pridelands.
5. If Simba is alive, then Scar will not remain as king.

F. For each argument, write a symbolisation key and symbolise all of the
sentences of the argument in TFL.
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1. If Dorothy plays the piano in the morning, then Roger wakes up cranky.
Dorothy plays piano in the morning unless she is distracted. So if Roger
does not wake up cranky, then Dorothy must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville will be sad. If it
snows, Neville will be cold. Therefore, Neville will either be sad or cold
on Tuesday.

3. If Zoog remembered to do his chores, then things are clean but not neat.
If he forgot, then things are neat but not clean. Therefore, things are
either neat or clean; but not both.

G. We symbolised an exclusive or using ‘∨’, ‘∧’, and ‘¬’. How could you
symbolise an exclusive or using only two connectives? Is there any way to
symbolise an exclusive or using only one connective?
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The sentence ‘either apples are red, or berries are blue’ is a sentence of English,
and the sentence ‘(A∨B)’ is a sentence of TFL. Although we can identify sen-
tences of English when we encounter them, we do not have a formal definition
of ‘sentence of English’. But in this chapter, we shall offer a complete defini-
tion of what counts as a sentence of TFL. This is one respect in which a formal
language like TFL is more precise than a natural language like English.

6.1 Expressions

We have seen that there are three kinds of symbols in TFL:

Atomic sentences A,B,C, . . . , Z
with subscripts, as needed A1, B1, Z1, A2, A25, J375, . . .

Connectives ¬,∧,∨,→,↔

Brackets ( , )

We define an expression of tfl as any string of symbols of TFL. Take any
of the symbols of TFL and write them down, in any order, and you have an
expression of TFL.

6.2 Sentences

Of course, many expressions of TFL will be total gibberish. We want to know
when an expression of TFL amounts to a sentence.

Obviously, individual atomic sentences like ‘A’ and ‘G13’ should count as
sentences. We can form further sentences out of these by using the various
connectives. Using negation, we can get ‘¬A’ and ‘¬G13’. Using conjunction,
we can get ‘(A∧G13)’, ‘(G13 ∧A)’, ‘(A∧A)’, and ‘(G13 ∧G13)’. We could also
apply negation repeatedly to get sentences like ‘¬¬A’ or apply negation along
with conjunction to get sentences like ‘¬(A ∧G13)’ and ‘¬(G13 ∧ ¬G13)’. The
possible combinations are endless, even starting with just these two sentence
letters, and there are infinitely many sentence letters. So there is no point in
trying to list all the sentences one by one.

Instead, we will describe the process by which sentences can be constructed.
Consider negation: Given any sentence A of TFL, ¬A is a sentence of TFL.
(Why the funny fonts? I return to this in §7.)

24
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We can say similar things for each of the other connectives. For instance, if
A and B are sentences of TFL, then (A ∧ B) is a sentence of TFL. Providing
clauses like this for all of the connectives, we arrive at the following formal
definition for a sentence of tfl:

1. Every atomic sentence is a sentence.

2. If A is a sentence, then ¬A is a sentence.

3. If A and B are sentences, then (A ∧ B) is a sentence.

4. If A and B are sentences, then (A ∨ B) is a sentence.

5. If A and B are sentences, then (A → B) is a sentence.

6. If A and B are sentences, then (A ↔ B) is a sentence.

7. Nothing else is a sentence.

Definitions like this are called recursive. Recursive definitions begin with some
specifiable base elements, and then present ways to generate indefinitely many
more elements by compounding together previously established ones. To give
you a better idea of what a recursive definition is, we can give a recursive
definition of the idea of an ancestor of mine. We specify a base clause.

• My parents are ancestors of mine.

and then offer further clauses like:

• If x is an ancestor of mine, then x’s parents are ancestors of mine.
• Nothing else is an ancestor of mine.

Using this definition, we can easily check to see whether someone is my ancestor:
just check whether she is the parent of the parent of. . . one of my parents. And
the same is true for our recursive definition of sentences of TFL. Just as the
recursive definition allows complex sentences to be built up from simpler parts,
the definition allows us to decompose sentences into their simpler parts. And
if we get down to atomic sentences, then we are ok.

Let’s consider some examples.
Suppose we want to know whether or not ‘¬¬¬D’ is a sentence of TFL.

Looking at the second clause of the definition, we know that ‘¬¬¬D’ is a
sentence if ‘¬¬D’ is a sentence. So now we need to ask whether or not ‘¬¬D’
is a sentence. Again looking at the second clause of the definition, ‘¬¬D’ is a
sentence if ‘¬D’ is. Again, ‘¬D’ is a sentence if ‘D’ is a sentence. Now ‘D’
is an atomic sentence of TFL, so we know that ‘D’ is a sentence by the first
clause of the definition. So for a compound sentence like ‘¬¬¬D’, we must
apply the definition repeatedly. Eventually we arrive at the atomic sentences
from which the sentence is built up.

Next, consider the example ‘¬(P ∧ ¬(¬Q ∨ R))’. Looking at the second
clause of the definition, this is a sentence if ‘(P ∧ ¬(¬Q ∨ R))’ is. And this is
a sentence if both ‘P ’ and ‘¬(¬Q∨R)’ are sentences. The former is an atomic
sentence, and the latter is a sentence if ‘(¬Q∨R)’ is a sentence. It is. Looking
at the fourth clause of the definition, this is a sentence if both ‘¬Q’ and ‘R’
are sentences. And both are!
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Ultimately, every sentence is constructed nicely out of atomic sentences.
When we are dealing with a sentence other than an atomic sentence, we can
see that there must be some sentential connective that was introduced last,
when constructing the sentence. We call that the main logical operator
of the sentence. In the case of ‘¬¬¬D’, the main logical operator is the very
first ‘¬’ sign. In the case of ‘(P ∧¬(¬Q∨R))’, the main logical operator is ‘∧’.
In the case of ‘((¬E ∨ F ) → ¬¬G)’, the main logical operator is ‘→’.

The recursive structure of sentences in TFL will be important when we
consider the circumstances under which a particular sentence would be true or
false. The sentence ‘¬¬¬D’ is true if and only if the sentence ‘¬¬D’ is false,
and so on through the structure of the sentence, until we arrive at the atomic
components. We will return to this point in chapter 3.

The recursive structure of sentences in TFL also allows us to give a formal
definition of the scope of a negation (mentioned in §5.2). The scope of a ‘¬’
is the subsentence for which ‘¬’ is the main logical operator. So in a sentence
like:

(P ∧ (¬(R ∧B) ↔ Q))

this was constructed by conjoining ‘P ’ with ‘(¬(R ∧ B) ↔ Q)’. This last
sentence was constructed by placing a biconditional between ‘¬(R∧B)’ and ‘Q’.
And the former of these sentences—a subsentence of our original sentence—is a
sentence for which ‘¬’ is the main logical operator. So the scope of the negation
is just ‘¬(R ∧B)’. More generally:

The scope of a connective (in a sentence) is the subsentence for
which that connective is the main logical operator.

6.3 Bracketing conventions

Strictly speaking, the brackets in ‘(Q ∧ R)’ are an indispensable part of the
sentence. Part of this is because we might use ‘(Q ∧R)’ as a subsentence in a
more complicated sentence. For example, we might want to negate ‘(Q ∧ R)’,
obtaining ‘¬(Q ∧ R)’. If we just had ‘Q ∧ R’ without the brackets and put a
negation in front of it, we would have ‘¬Q∧R’. It is most natural to read this
as meaning the same thing as ‘(¬Q ∧ R)’. But as we saw in §5.2, this is very
different from ‘¬(Q ∧R)’.

Strictly speaking, then, ‘Q ∧R’ is not a sentence. It is a mere expression.
When working with TFL, however, it will make our lives easier if we are

sometimes a little less than strict. So, here are some convenient conventions.
First, we allow ourselves to omit the outermost brackets of a sentence. Thus

we allow ourselves to write ‘Q∧R’ instead of the sentence ‘(Q∧R)’. However,
we must remember to put the brackets back in, when we want to embed the
sentence into a more complicated sentence!

Second, it can be a bit painful to stare at long sentences with many nested
pairs of brackets. To make things a bit easier on the eyes, we shall allow
ourselves to use square brackets, ‘[’ and ‘]’, instead of rounded ones. So there
is no logical difference between ‘(P ∨Q)’ and ‘[P ∨Q]’, for example.

Combining these two conventions, we can rewrite the unwieldy sentence

(((H → I) ∨ (I → H)) ∧ (J ∨K))
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rather more simply as follows:[
(H → I) ∨ (I → H)

]
∧ (J ∨K)

The scope of each connective is now much clearer.

Practice exercises

A. For each of the following: (a) Is it a sentence of TFL, strictly speaking?
(b) Is it a sentence of TFL, allowing for our relaxed bracketing conventions?

1. (A)
2. J374 ∨ ¬J374
3. ¬¬¬¬F
4. ¬ ∧ S
5. (G ∧ ¬G)
6. (A → (A ∧ ¬F )) ∨ (D ↔ E)
7. [(Z ↔ S) → W ] ∧ [J ∨X]
8. (F ↔ ¬D → J) ∨ (C ∧D)

B. Are there any sentences of TFL that contain no atomic sentences? Explain
your answer.

C. What is the scope of each connective in the sentence[
(H → I) ∨ (I → H)

]
∧ (J ∨K)
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In this chapter, I have talked a lot about sentences. So I need to pause to
explain an important, and very general, point.

7.1 Quotation conventions

Consider these two sentences:

• David Cameron is the Prime Minister.
• The expression ‘David Cameron’ is composed of two uppercase letters

and ten lowercase letters

When we want to talk about the Prime Minister, we use his name. When we
want to talk about the Prime Minister’s name, we mention that name. And
we do so by putting it in quotation marks.

There is a general point here. When we want to talk about things in the
world, we just use words. When we want to talk about words, we typically
have to mention those words. We need to indicate that we are mentioning
them, rather than using them. To do this, some convention is needed. We can
put them in quotation marks, or display them centrally in the page (say). So
this sentence:

• ‘David Cameron’ is the Prime Minister.

says that some expression is the Prime Minister. And that’s false. The man is
the Prime Minister; his name isn’t. Conversely, this sentence:

• David Cameron is composed of two uppercase letters and ten lowercase
letters.

also says something false: David Cameron is a man, made of meat rather than
letters. One final example:

• “ ‘David Cameron’ ” is the name of ‘David Cameron’.

On the left-hand-side, here, we have the name of a name. On the right hand
side, we have a name. Perhaps this kind of sentence only occurs in logic text-
books, but it is true.

Those are just general rules for quotation, and you should observe them
carefully in all your work! To be clear, the quotation-marks here do not indicate
indirect speech. They indicate that you are moving from talking about an
object, to talking about the name of that object.

28
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7.2 Object language and metalanguage

These general quotation conventions are of particular importance for us. Af-
ter all, we are describing a formal language here, TFL, and so we are often
mentioning expressions from TFL.

When we talk about a language, the language that we are talking about
is called the object language. The language that we use to talk about the
object language is called the metalanguage.

For the most part, the object language in this chapter has been the formal
language that we have been developing: TFL. The metalanguage is English.
Not conversational English exactly, but English supplemented with some ad-
ditional vocabulary which helps us to get along.

Now, I have used italic uppercase letters for atomic sentences of TFL:

A,B,C,Z,A1, B4, A25, J375, . . .

These are sentences of the object language (TFL). They are not sentences of
English. So I must not say, for example:

• D is an atomic sentence of TFL.

Obviously, I am trying to come out with an English sentence that says some-
thing about the object language (TFL). But ‘D’ is a sentence of TFL, and no
part of English. So the preceding is gibberish, just like:

• Schnee ist weiß is a German sentence.

What we surely meant to say, in this case, is:

• ‘Schnee ist weiß’ is a German sentence.

Equally, what we meant to say above is just:

• ‘D’ is an atomic sentence of TFL.

The general point is that, whenever we want to talk in English about some
specific expression of TFL, we need to indicate that we are mentioning the
expression, rather than using it. We can either deploy quotation marks, or we
can adopt some similar convention, such as placing it centrally in the page.

7.3 Swash-fonts and Quine quotes

However, we do not just want to talk about specific expressions of TFL. We
also want to be able to talk about any arbitrary sentence of TFL. Indeed, I
had to do this in §6, when I presented the recursive definition of a sentence of
TFL. I used uppercase swash-font letters to do this, namely:

A ,B ,C ,D, . . .

These symbols do not belong to TFL. Rather, they are part of our (augmented)
metalanguage that we use to talk about any expression of TFL. To repeat the
second clause of the recursive definition of a sentence of TFL, we said:

3. If A is a sentence, then ¬A is a sentence.
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This talks about arbitrary sentences. If we had instead offered:

• If ‘A’ is a sentence, then ‘¬A’ is a sentence.

this would not have allowed us to determine whether ‘¬B’ is a sentence. To
emphasise, then:

‘A ’ is a symbol in augmented English, which we use to talk about
any TFL expression. ‘A’ is a particular atomic sentence of TFL.

But this last example raises a further complications for our quotation con-
ventions. I have not included any quotation marks in the third clause of our
recursive definition. Should I have done so?

The problem is that the expression on the right-hand-side of this rule is not
a sentence of English, since it contains ‘¬’. So we might try to write:

3′. If A is a sentence, then ‘¬A ’ is a sentence.

But this is no good: ‘¬A ’ is not a TFL sentence, since ‘A ’ is a symbol of
(augmented) English rather than a symbol of TFL.

What we really want to say is something like this:

3′′. If A and B are sentences, then the result of concatenating the symbol
‘¬’ with the sentence A is a sentence.

This is impeccable, but rather long-winded. But we can avoid long-windedness
by creating our own conventions. We can perfectly well stipulate that an ex-
pression like ‘¬A ’ should simply be read directly in terms of rules for concate-
nation. So, officially, the metalanguage expression ‘¬A ’ simply abbreviates:

the result of concatenating the symbol ‘¬’ with the sentence A

and similarly, for expressions like ‘(A ∧ B)’, ‘(A ∨ B)’, etc.

7.4 Quotation conventions for arguments

One of our main purposes for using TFL is to study arguments, and that will
be our concern in chapter 3. In English, the premises of an argument are often
expressed by individual sentences, and the conclusion by a further sentence.
Since we can symbolise English sentences, we can symbolise English arguments
using TFL. Thus we might ask whether the argument whose premises are the
TFL sentences ‘A’ and ‘A → C’, and whose conclusion is the TFL sentence ‘C’,
is valid. However, it is quite a mouthful to write that every time. So instead I
shall introduce another bit of abbreviation. This:

A1,A2, . . . ,An .˙. C

abbreviates:

the argument with premises A1,A2, . . . ,An and conclusion C

To avoid unnecessary clutter, we shall not regard this as requiring quotation
marks around it. (Note, then, that ‘.˙.’ is a symbol of our augmented metalan-
guage, and not a new symbol of TFL.)
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Any non-atomic sentence of TFL is composed of atomic sentences with senten-
tial connectives. The truth value of the compound sentence depends only on
the truth value of the atomic sentences that comprise it. In order to know the
truth value of ‘(D ∧ E)’, for instance, you only need to know the truth value
of ‘D’ and the truth value of ‘E’.

We introduced five connectives in chapter 2. So we simply need to explain
how they map between truth values. For convenience, we shall abbreviate
‘True’ with ‘T’ and ‘False’ with ‘F’. (But just to be clear, the two truth values
are True and False; the truth values are not letters!)

Negation. For any sentence A : If A is true, then ¬A is false. If ¬A is true,
then A is false. We can summarize this in the characteristic truth table for
negation:

A ¬A
T F
F T

Conjunction. For any sentences A and B , A∧B is true if and only if both
A and B are true. We can summarize this in the characteristic truth table for
conjunction:

A B A ∧ B
T T T
T F F
F T F
F F F

Note that conjunction is symmetrical. The truth value for A ∧B is always the
same as the truth value for B ∧ A .

Disjunction. Recall that ‘∨’ always represents inclusive or. So, for any sen-
tences A and B , A ∨ B is true if and only if either A or B is true. We can
summarize this in the characteristic truth table for disjunction:

A B A ∨ B
T T T
T F T
F T T
F F F
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Like conjunction, disjunction is symmetrical.

Conditional. I’m just going to come clean and admit it. Conditionals are
a right old mess in TFL. Exactly how much of a mess they are is a matter of
philosophical contention. I shall discuss a few of the subtleties in §§9.3 and
11.5. For now, I am going to stipulate the following: A → B is false if and
only if A is true and B is false. We can summarize this with a characteristic
truth table for the conditional.

A B A → B
T T T
T F F
F T T
F F T

The conditional is asymmetrical. You cannot swap the antecedent and conse-
quent without changing the meaning of the sentence, because A → B has a
very different truth table from B → A .

Biconditional. Since a biconditional is to be the same as the conjunction of
a conditional running in each direction, we shall want the truth table for the
biconditional to be:

A B A ↔ B
T T T
T F F
F T F
F F T

Unsurprisingly, the biconditional is symmetrical.
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9.1 The idea of truth-functionality

I want to introduce an important idea.

A connective is truth-functional iff the truth value of a sen-
tence with that connective as its main logical operator is uniquely
determined by the truth value(s) of the constituent sentence(s).

Every connective in TFL is truth-functional. The truth value of a negation
is uniquely determined by the truth value of the unnegated sentence. The
truth value of a conjunction is uniquely determined by the truth value of both
conjuncts. The truth value of a disjunction is uniquely determined by the truth
value of both disjuncts. And so on. To determine the truth value of some TFL
sentence, we only need to know the truth value of its components.

This is what gives TFL its name: it is truth-functional logic.
In plenty of languages there are connectives that are not truth-functional.

In English, for example, we can form a new sentence from any simpler sentence
by prefixing it with ‘It is necessarily the case that. . . ’. The truth value of this
new sentence is not fixed solely by the truth value of the original sentence. For
consider two true sentences:

1. 2 + 2 = 4
2. Shostakovich wrote fifteen string quartets

Whereas it is necessarily the case that 2 + 2 = 4, it is not necessarily the
case that Shostakovich wrote fifteen string quartets. If Shostakovich had died
earlier, he would have failed to finish Quartet no. 15; if he had lived longer,
he might have written a few more. So ‘It is necessarily the case that. . . ’ is a
connective of English, but it is not truth-functional.

9.2 Symbolising versus translating

All of the connectives of TFL are truth-functional. But more than that: they
really do nothing but map us between truth values.

When we symbolise a sentence or an argument in TFL, we ignore everything
besides the contribution that the truth values of a component might make to the
truth value of the whole. There are subtleties to our ordinary claims that far
outstrip their mere truth values. Sarcasm; poetry; snide implicature; emphasis;
these are important parts of everyday discourse. But none of this is retained
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in TFL. As remarked in §5, TFL cannot capture the subtle differences between
the following English sentences:

1. Jon is fat and Jon is quick
2. Although Jon is fat, Jon is quick
3. Despite being fat, Jon is quick
4. Jon is quick, albeit fat
5. Jon’s fatness notwithstanding, he is quick

All of the above sentences will be symbolised with the same TFL sentence,
perhaps ‘F ∧Q’.

I keep saying that we use TFL sentences to symbolise English sentences.
Many other textbooks talk about translating English sentences into TFL. But a
good translation should preserve certain facets of meaning, and—as I have just
pointed out—TFL just cannot do that. This is why I shall speak of symbolising
English sentences, rather than of translating them.

This affects how we should understand our symbolisation keys. Consider a
key like:

F : Jon is fat.
Q: Jon is quick.

Other textbooks will understand this as a stipulation that the TFL sentence
‘F ’ should mean that Jon is fat, and that the TFL sentence ‘Q’ should mean
that Jon is quick. But TFL just is totally unequipped to deal with meaning.
The preceding symbolisation key is doing no more nor less than stipulating that
the TFL sentence ‘F ’ should take the same truth value as the English sentence
‘Jon is fat’ (whatever that might be), and that the TFL sentence ‘Q’ should
take the same truth value as the English sentence ‘Jon is quick’ (whatever that
might be).

When we treat a TFL sentence as symbolising an English sentence,
we are stipulating that the TFL sentence is to take the same truth
value as that English sentence.

9.3 Indicative versus subjunctive conditionals

I want to bring home the point that TFL can only deal with truth functions by
considering the case of the conditional. When I introduced the characteristic
truth table for the material conditional in §8, I did not say anything to justify
it. Let me now offer a justification, which follows Dorothy Edgington.1

Suppose that Lara has drawn some shapes on a piece of paper, and coloured
some of them in. I have not seen them, but I claim:

If any shape is grey, then that shape is also circular.

As it happens, Lara has drawn the following:

1Dorothy Edgington, ‘Conditionals’, 2006, in the Stanford Encyclopedia of Philosophy
(http://plato.stanford.edu/entries/conditionals/).

http://plato.stanford.edu/entries/conditionals/
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..A.. C. D

In this case, my claim is surely true. Shapes C and D are not grey, and so can
hardly present counterexamples to my claim. Shape A is grey, but fortunately
it is also circular. So my claim has no counterexamples. It must be true. And
that means that each of the following instances of my claim must be true too:

• If A is grey, then it is circular (true antecedent, true consequent)
• If C is grey, then it is circular (false antecedent, true consequent)
• If D is grey, then it is circular (false antecedent, false consequent)

However, if Lara had drawn a fourth shape, thus:

..A. B. C. D

then my claim would have be false. So it must be that this claim is false:

• If B is grey, then it is a circular (true antecedent, false consequent)

Now, recall that every connective of TFL has to be truth-functional. This
means that the mere truth value of the antecedent and consequent must
uniquely determine the truth value of the conditional as a whole. Thus, from
the truth values of our four claims—which provide us with all possible combi-
nations of truth and falsity in antecedent and consequent—we can read off the
truth table for the material conditional.

What this argument shows is that ‘→’ is the only candidate for a truth-
functional conditional. Otherwise put, it is the best conditional that TFL can
provide. But is it any good, as a surrogate for the conditionals we use in
everyday language? Consider two sentences:

1. If Mitt Romney had won the 2012 election, then he would have been the
45th President of the USA.

2. If Mitt Romney had won the 2012 election, then he would have turned
into a helium-filled balloon and floated away into the night sky.

Sentence 1 is true; sentence 2 is false. But both have false antecedents and
false consequents. So the truth value of the whole sentence is not uniquely
determined by the truth value of the parts. Do not just blithely assume that
you can adequately symbolise an English ‘if. . . , then. . . ’ with TFL’s ‘→’.

The crucial point is that sentences 1 and 2 employ subjunctive conditionals,
rather than indicative conditionals. They ask us to imagine something contrary
to fact—Mitt Romney lost the 2012 election—and then ask us to evaluate what
would have happened in that case. Such considerations just cannot be tackled
using ‘→’.

I shall say more about the difficulties with conditionals in §11.5. For now,
I shall content myself with the observation that ‘→’ is the only candidate for
a truth-functional conditional, but that many English conditionals cannot be
represented adequately using ‘→’. TFL is an intrinsically limited language.
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So far, we have considered assigning truth values to TFL sentences indirectly.
We have said, for example, that a TFL sentence such as ‘B’ is to take the same
truth value as the English sentence ‘Big Ben is in London’ (whatever that truth
value may be). But we can also assign truth values directly. We can simply
stipulate that ‘B’ is to be true, or stipulate that it is to be false.

A valuation is any assignment of truth values to particular atomic
sentences of TFL.

The power of truth tables lies in the following. Each row of a truth table
represents a possible valuation. The entire truth table represents all possible
valuations. And the truth table provides us with a means to calculate the
truth value of complex sentences, on each possible valuation. This is easiest to
explain by example.

10.1 A worked example

Consider the sentence ‘(H ∧ I) → H’. There are four possible ways to assign
True and False to the atomic sentence ‘H’ and ‘I’—four possible valuations—
which we can represent as follows:

H I (H∧I)→H
T T
T F
F T
F F

To calculate the truth value of the entire sentence ‘(H ∧ I) → H’, we first
copy the truth values for the atomic sentences and write them underneath the
letters in the sentence:

H I (H∧I)→H
T T T T T
T F T F T
F T F T F
F F F F F

Now consider the subsentence ‘(H ∧ I)’. This is a conjunction, (A ∧ B), with
‘H’ as A and with ‘I’ as B . The characteristic truth table for conjunction gives
the truth conditions for any sentence of the form (A ∧ B), whatever A and B
might be. It summarises the point that a conjunction is true iff both conjuncts
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are true. In this case, our conjuncts are just ‘H’ and ‘I’. They are both true
on (and only on) the first line of the truth table. Accordingly, we can calculate
the truth value of the conjunction on all four rows.

A ∧B
H I (H ∧I)→H
T T T T T T
T F T F F T
F T F F T F
F F F F F F

Now, the entire sentence that we are dealing with is a conditional, A → B , with
‘(H ∧ I)’ as A and with ‘H’ as B . On the second row, for example, ‘(H ∧ I)’
is false and ‘H’ is true. Since a conditional is true when the antecedent is
false, we write a ‘T’ in the second row underneath the conditional symbol. We
continue for the other three rows and get this:

A →B
H I (H ∧ I)→H
T T T T T
T F F T T
F T F T F
F F F T F

The conditional is the main logical connective of the sentence. And the column
of ‘T’s underneath the conditional tells us that the sentence ‘(H ∧ I) → H’ is
true regardless of the truth values of ‘H’ and ‘I’. They can be true or false in
any combination, and the compound sentence still comes out true. Since we
have considered all four possible assignments of truth and falsity to ‘H’ and
‘I’—since, that is, we have considered all the different valuations—we can say
that ‘(H ∧ I) → H’ is true on every valuation.

In this example, I have not repeated all of the entries in every column in
every successive table. When actually writing truth tables on paper, however,
it is impractical to erase whole columns or rewrite the whole table for every
step. Although it is more crowded, the truth table can be written in this way:

H I (H ∧I)→H
T T T T T T T
T F T F F T T
F T F F T T F
F F F F F T F

Most of the columns underneath the sentence are only there for bookkeeping
purposes. The column that matters most is the column underneath the main
logical operator for the sentence, since this tells you the truth value of the entire
sentence. I have emphasised this, by putting this column in bold. When you
work through truth tables yourself, you should similarly emphasise it (perhaps
by underlining).
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10.2 Building complete truth tables

A complete truth table has a line for every possible assignment of True
and False to the relevant atomic sentences. Each line represents a valuation,
and a complete truth table has a line for all the different valuations.

The size of the complete truth table depends on the number of different
atomic sentences in the table. A sentence that contains only one atomic sen-
tence requires only two rows, as in the characteristic truth table for negation.
This is true even if the same letter is repeated many times, as in the sentence
‘[(C ↔ C) → C] ∧ ¬(C → C)’. The complete truth table requires only two
lines because there are only two possibilities: ‘C’ can be true or it can be false.
The truth table for this sentence looks like this:

C [(C↔C )→C ] ∧ ¬(C→C )
T T T T T T FF T T T
F F T F F F FF F T F

Looking at the column underneath the main logical operator, we see that the
sentence is false on both rows of the table; i.e., the sentence is false regardless
of whether ‘C’ is true or false. It is false on every valuation.

A sentence that contains two atomic sentences requires four lines for a com-
plete truth table, as in the characteristic truth tables, and as in the complete
truth table for ‘(H ∧ I) → H’.

A sentence that contains three atomic sentences requires eight lines:

M N P M ∧ (N ∨P )
T T T T T T T T
T T F T T T T F
T F T T T F T T
T F F T F F F F
F T T F F T T T
F T F F F T T F
F F T F F F T T
F F F F F F F F

From this table, we know that the sentence ‘M ∧ (N ∨P )’ can be true or false,
depending on the truth values of ‘M ’, ‘N ’, and ‘P ’.

A complete truth table for a sentence that contains four different atomic
sentences requires 16 lines. Five letters, 32 lines. Six letters, 64 lines. And so
on. To be perfectly general: If a complete truth table has n different atomic
sentences, then it must have 2n lines.

In order to fill in the columns of a complete truth table, begin with the right-
most atomic sentence and alternate between ‘T’ and ‘F’. In the next column
to the left, write two ‘T’s, write two ‘F’s, and repeat. For the third atomic
sentence, write four ‘T’s followed by four ‘F’s. This yields an eight line truth
table like the one above. For a 16 line truth table, the next column of atomic
sentences should have eight ‘T’s followed by eight ‘F’s. For a 32 line table, the
next column would have 16 ‘T’s followed by 16 ‘F’s. And so on.
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10.3 More bracketing conventions

Consider these two sentences:

((A ∧B) ∧ C)

(A ∧ (B ∧ C))

These have the same truth table. Consequently, it will never make any differ-
ence from the perspective of truth value – which is all that TFL cares about
(see §9) – which of the two sentences we assert (or deny). And since the order
of the brackets does not matter, I shall allow us to drop them. In short, we
can save some ink and some eyestrain by writing:

A ∧B ∧ C

The general point is that, if we just have a long list of conjunctions, we can
drop the inner brackets. (I already allowed us to drop outermost brackets in
§6.) The same observation holds for disjunctions. Since the following sentences
have exactly the same truth table:

((A ∨B) ∨ C)

(A ∨ (B ∨ C))

we can simply write:

A ∨B ∨ C

And generally, if we just have a long list of disjunctions, we can drop the inner
brackets. But be careful. These two sentences have different truth tables:

((A → B) → C)

(A → (B → C))

So if we were to write:

A → B → C

it would be dangerously ambiguous. So we must not do the same with condi-
tionals. Equally, these sentences have different truth tables:

((A ∨B) ∧ C)

(A ∨ (B ∧ C))

So if we were to write:

A ∨B ∧ C

it would be dangerously ambiguous. Never write this. The moral is: you can
drop brackets when dealing with a long list of conjunctions, or when dealing
with a long list of disjunctions. But that’s it.



10. Complete truth tables 41

Practice exercises

A. Offer complete truth tables for each of the following:

1. A → A
2. C → ¬C
3. (A ↔ B) ↔ ¬(A ↔ ¬B)
4. (A → B) ∨ (B → A)
5. (A ∧B) → (B ∨A)
6. ¬(A ∨B) ↔ (¬A ∧ ¬B)
7.

[
(A ∧B) ∧ ¬(A ∧B)

]
∧ C

8. [(A ∧B) ∧ C] → B
9. ¬

[
(C ∨A) ∨B

]
B. Check all the claims made in introducing the new notational conventions
in §10.3, i.e. show that:

1. ‘((A ∧B) ∧ C)’ and ‘(A ∧ (B ∧ C))’ have the same truth table
2. ‘((A ∨B) ∨ C)’ and ‘(A ∨ (B ∨ C))’ have the same truth table
3. ‘((A ∨B) ∧ C)’ and ‘(A ∨ (B ∧ C))’ do not have the same truth table
4. ‘((A → B) → C)’ and ‘(A → (B → C))’ do not have the same truth

table

Also, check whether:

5. ‘((A ↔ B) ↔ C)’ and ‘(A ↔ (B ↔ C))’ have the same truth table

If you want additional practice, you can construct truth tables for any of the
sentences and arguments in the exercises for the previous chapter.
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In the previous section, we introduced the idea of a valuation and showed how
to determine the truth value of any TFL sentence, on any valuation, using a
truth table. In this section, we shall introduce some related ideas, and show
how to use truth tables to test whether or not they apply.

11.1 Tautologies and contradictions

In §3, I explained necessary truth and necessary falsity. Both notions have
surrogates in TFL. We shall start with a surrogate for necessary truth.

A is a tautology iff it is true on every valuation.

We can determine whether a sentence is a tautology just by using truth tables.
If the sentence is true on every line of a complete truth table, then it is true
on every valuation, so it is a tautology. In the example of §10, ‘(H ∧ I) → H’
is a tautology.

This is only, though, a surrogate for necessary truth. There are some nec-
essary truths that we cannot adequately symbolise in TFL. An example is
‘2 + 2 = 4’. This must be true, but if we try to symbolise it in TFL, the best
we can offer is an atomic sentence, and no atomic sentence is a tautology. Still,
if we can adequately symbolise some English sentence using a TFL sentence
which is a tautology, then that English sentence expresses a necessary truth.

We have a similar surrogate for necessary falsity:

A is a contradiction iff it is false on every valuation.

We can determine whether a sentence is a contradiction just by using truth
tables. If the sentence is false on every line of a complete truth table, then
it is false on every valuation, so it is a contradiction. In the example of §10,
‘[(C ↔ C) → C] ∧ ¬(C → C)’ is a contradiction.

11.2 Tautological equivalence

Here is a similar, useful notion:

A and B are tautologically equivalent iff they have the same
truth value on every valuation.

We have already made use of this notion, in effect, in §10.3; the point was that
‘(A∧B)∧C’ and ‘A∧ (B ∧C)’ are tautologically equivalent. Again, it is easy
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to test for tautological equivalence using truth tables. Consider the sentences
‘¬(P ∨Q)’ and ‘¬P ∧¬Q’. Are they tautologically equivalent? To find out, we
construct a truth table.

P Q ¬ (P ∨Q) ¬P ∧ ¬Q
T T F T T T F T FF T
T F F T T F F T FT F
F T F F T T T F FF T
F F T F F F T F TT F

Look at the columns for the main logical operators; negation for the first sen-
tence, conjunction for the second. On the first three rows, both are false. On
the final row, both are true. Since they match on every row, the two sentences
are tautologically equivalent.

11.3 Consistency

In §3, I said that sentences are jointly consistent iff it is possible for all of them
to be true at once. We can offer a surrogate for this notion too:

A1,A2, . . . ,An are jointly tautologically consistent iff there
is some valuation which makes them all true.

Derivatively, sentences are jointly tautologically inconsistent if there is no val-
uation that makes them all true. Again, it is easy to test for joint tautological
consistency using truth tables.

11.4 Tautological entailment and validity

The following idea is closely related to that of joint consistency:

The sentences A1,A2, . . . ,An tautologically entail the sen-
tence C if there is no valuation of the atomic sentences which makes
all of A1,A2, . . . ,An true and C false.

Again, it is easy to test this with a truth table. Let us check whether ‘¬L →
(J ∨ L)’ and ‘¬L’ tautologically entail ‘J ’, we simply need to check whether
there is any valuation which makes both ‘¬L → (J ∨ L)’ and ‘¬L’ true whilst
making ‘J ’ false. So we use a truth table:

J L ¬L→ (J ∨L) ¬ L J
T T FT T T T T FT T
T F TF T T T F TF T
F T FT T F T T FT F
F F TF F F F F TF F

The only row on which both‘¬L → (J ∨ L)’ and ‘¬L’ are true is the second
row, and that is a row on which ‘J ’ is also true. So ‘¬L → (J ∨ L)’ and ‘¬L’
tautologically entail ‘J ’.

We now make an important observation:

If A1,A2, . . . ,An tautologically entail C , then A1,A2, . . . ,An .˙. C
is valid.
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Here’s why. If A1,A2, . . . ,An tautologically entail C , then there is no valuation
which makes all of A1,A2, . . . ,An true whilst making C false. This means that
it is logically impossible for A1,A2, . . . ,An all to be true whilst C is false. But
this is just what it takes for an argument, with premises A1,A2, . . . ,An and
conclusion C , to be valid!

In short, we have a way to test for the validity of English arguments. First,
we symbolise them in TFL, as having premises A1,A2, . . . ,An, and conclusion
C . Then we test for tautological entailment using truth tables.

11.5 The limits of these tests

We have reached an important milestone: a test for the validity of arguments!
But, we should not get carried away just yet. It is important to understand the
limits of our achievement. I shall illustrate these limits with three examples.

First, consider the argument:

1. Daisy has four legs. So Daisy has more than two legs.

To symbolise this argument in TFL, we would have to use two different atomic
sentences – perhaps ‘F ’ and ‘T ’ – for the premise and the conclusion respec-
tively. Now, it is obvious that ‘F ’ does not tautologically entail ‘T ’. But the
English argument surely seems valid!

Second, consider the sentence:

2. Jan is neither bald nor not-bald.

To symbolise this sentence in TFL, we would offer something like ‘¬J ∧ ¬¬J ’.
This a contradiction (check this with a truth-table). But sentence 2 does not
itself seem like a contradiction; for we might have happily go on to add ‘Jan is
on the borderline of baldness’ !

Third, consider the following sentence:

3. It’s not the case that, if God exists, She answers malevolent prayers.

Symbolising this in TFL, we would offer something like ‘¬(G → M)’. Now,
‘¬(G → M)’ tautologically entails ‘G’ (again, check this with a truth table). So
if we symbolise sentence 3 in TFL, it seems to entail that God exists. But that’s
strange: surely even the atheist can accept sentence 3, without contradicting
herself!

In different ways, these three examples highlight some of the limits of work-
ing with a language (like TFL) that can only handle truth-functional connec-
tives. Moreover, these limits give rise to some interesting questions in philo-
sophical logic. The case of Jan’s baldness (or otherwise) raises the general
question of what logic we should use when dealing with vague discourse. The
case of the atheist raises the question of how to deal with the (so-called) para-
doxes of material implication. Part of the purpose of this course is to equip you
with the tools to explore these questions of philosophical logic. But we have to
walk before we can run; we have to become proficient in using TFL, before we
can adequately discuss its limits, and consider alternatives.
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11.6 The double-turnstile

We are going to use the notion of tautological entailment rather a lot in this
course. It will help us, then, to introduce a symbol that abbreviates it. Rather
than saying that the TFL sentences A1,A2, . . . and An together tautologically
entail C , we shall abbreviate this by:

A1,A2, . . . ,An ⊨ C

The symbol ‘⊨’ is known as the double-turnstile, since it looks like a turnstile
with two horizontal beams.

But let me be clear. ‘⊨’ is not a symbol of TFL. Rather, it is a symbol
of our metalanguage, augmented English (recall the difference between object
language and metalanguage from §7). So the metalanguage sentence:

• P, P → Q ⊨ Q

is just an abbreviation for the English sentence:

• The TFL sentences ‘P ’ and ‘P → Q’ tautologically entail ‘Q’

Note that there is no limit on the number of TFL sentences that can be men-
tioned before the symbol ‘⊨’. Indeed, we can even consider the limiting case:

⊨ C

This says that there is no valuation which makes all the sentences mentioned on
the left side of ‘⊨’ true whilst making C false. Since no sentences are mentioned
on the left side of ‘⊨’ in this case, this just means that there is no valuation
which makes C false. Otherwise put, it says that every valuation makes C true.
Otherwise put, it says that C is a tautology. Equally:

A ⊨

says that A is a contradiction.

11.7 ‘⊨’ versus ‘→’

I now want to compare and contrast ‘⊨’ and ‘→’.
Observe: A ⊨ C iff there is no valuation of the atomic sentences that makes

A true and C false.
Observe: A → C is a tautology iff there is no valuation of the atomic

sentences that makes A → C false. Since a conditional is true except when its
antecedent is true and its consequent false, A → C is a tautology iff there is
no valuation that makes A true and C false.

Combining these two observations, we see that A → C is a tautology iff
A ⊨ C . But there is a really, really important difference between ‘⊨’ and ‘→’:

‘→’ is a sentential connective of TFL.
‘⊨’ is a symbol of augmented English.

Indeed, when ‘→’ is flanked with two TFL sentences, the result is a longer TFL
sentence. By contrast, when we use ‘⊨’, we form a metalinguistic sentence that
mentions the surrounding TFL sentences.
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Practice exercises

A. Revisit your answers to §10A. Determine which sentences were tautologies,
which were contradictions, and which were neither tautologies nor contradic-
tions.

B. Use truth tables to determine whether these sentences are jointly consistent,
or jointly inconsistent:

1. A → A, ¬A → ¬A, A ∧A, A ∨A
2. A ∨B, A → C, B → C
3. B ∧ (C ∨A), A → B, ¬(B ∨ C)
4. A ↔ (B ∨ C), C → ¬A, A → ¬B

C. Use truth tables to determine whether each argument is valid or invalid.

1. A → A .˙. A
2. A → (A ∧ ¬A) .˙. ¬A
3. A ∨ (B → A) .˙. ¬A → ¬B
4. A ∨B,B ∨ C,¬A .˙. B ∧ C
5. (B ∧A) → C, (C ∧A) → B .˙. (C ∧B) → A

D. Answer each of the questions below and justify your answer.

1. Suppose that A and B are tautologically equivalent. What can you say
about A ↔ B?

2. Suppose that (A ∧ B) → C is neither a tautology nor a contradiction.
What can you say about whether A ,B .˙. C is valid?

3. Suppose that A , B and C are jointly tautologically inconsistent. What
can you say about (A ∧ B ∧ C )?

4. Suppose that A is a contradiction. What can you say about whether
A ,B ⊨ C?

5. Suppose that C is a tautology. What can you say about whether A ,B ⊨
C?

6. Suppose that A and B are tautologically equivalent. What can you say
about (A ∨ B)?

7. Suppose that A and B are not tautologically equivalent. What can you
say about (A ∨ B)?

E. Consider the following principle:

• Suppose A and B are tautologically equivalent. Suppose an argument
contains A (either as a premise, or as the conclusion). The validity of
the argument would be unaffected, if we replaced A with B .

Is this principle correct? Explain your answer.
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With practice, you will quickly become adept at filling out truth tables. In this
section, I want to give you some permissible shortcuts to help you along the
way.

12.1 Working through truth tables

You will quickly find that you do not need to copy the truth value of each
atomic sentence, but can simply refer back to them. So you can speed things
up by writing:

P Q (P ∨Q)↔¬P
T T T FF
T F T FF
F T T TT
F F F FT

You also know for sure that a disjunction is true whenever one of the disjuncts
is true. So if you find a true disjunct, there is no need to work out the truth
values of the other disjuncts. Thus you might offer:

P Q (¬P ∨¬Q) ∨ ¬P
T T F F F FF
T F F TT TF
F T TT
F F TT

Equally, you know for sure that a conjunction is false whenever one of the
conjuncts is false. So if you find a false conjunct, there is no need to work out
the truth value of the other conjunct. Thus you might offer:

P Q ¬ (P ∧¬Q) ∧ ¬P
T T FF
T F FF
F T T F TT
F F T F TT

A similar short cut is available for conditionals. You immediately know that
a conditional is true if either its consequent is true, or its antecedent is false.
Thus you might present:
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P Q ((P→Q)→P )→P
T T T
T F T
F T T F T
F F T F T

So ‘((P → Q) → P ) → P ’ is a tautology. In fact, it is an instance of Peirce’s
Law, named after Charles Sanders Peirce.

12.2 Testing for validity and entailment

When we use truth tables to test for validity or entailment, we are checking
for bad lines: lines where the premises are all true and the conclusion is false.
Note:

• Any line where the conclusion is true is not a bad line.
• Any line where some premise is false is not a bad line.

Since all we are doing is looking for bad lines, we should bear this in mind.
So: if we find a line where the conclusion is true, we do not need to evaluate
anything else on that line: that line definitely isn’t bad. Likewise, if we find a
line where some premise is false, we do not need to evaluate anything else on
that line.

With this in mind, consider how we might test the following for validity:

¬L → (J ∨ L),¬L .˙. J

The first thing we should do is evaluate the conclusion. If we find that the
conclusion is true on some line, then that is not a bad line. So we can simply
ignore the rest of the line. So at our first stage, we are left with something like:

J L ¬L→(J∨L) ¬L J
T T T
T F T
F T ? ? F
F F ? ? F

where the blanks indicate that we are not going to bother doing any more
investigation (since the line is not bad) and the question-marks indicate that
we need to keep investigating.

The easiest premise to evaluate is the second, so we next do that:

J L ¬L→(J∨L) ¬L J
T T T
T F T
F T F F
F F ? T F

Note that we no longer need to consider the third line on the table: it will
not be a bad line, because (at least) one of premises is false on that line. And
finally, we complete the truth table:
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J L ¬L→ (J∨L) ¬L J
T T T
T F T
F T F F
F F T F F T F

The truth table has no bad lines, so the argument is valid. (Any valuation on
which all the premises are true is a valuation on which the conclusion is true.)

It might be worth illustrating the tactic again. Let us check whether the
following argument is valid

A ∨B,¬(A ∧ C),¬(B ∧ ¬D) .˙. (¬C ∨D)

At the first stage, we determine the truth value of the conclusion. Since this is
a disjunction, it is true whenever either disjunct is true, so we can speed things
along a bit. We can then ignore every line apart from the few lines where the
conclusion is false.

A B C D A ∨B ¬(A ∧ C) ¬(B ∧ ¬D) (¬C ∨ D)
T T T T T
T T T F ? ? ? F F
T T F T T
T T F F T T
T F T T T
T F T F ? ? ? F F
T F F T T
T F F F T T
F T T T T
F T T F ? ? ? F F
F T F T T
F T F F T T
F F T T T
F F T F ? ? ? F F
F F F T T
F F F F T T

We must now evaluate the premises. We use shortcuts where we can:
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A B C D A ∨ B ¬ (A∧C) ¬ (B∧¬D) (¬C ∨ D)
T T T T T
T T T F T F T F F
T T F T T
T T F F T T
T F T T T
T F T F T F T F F
T F F T T
T F F F T T
F T T T T
F T T F T T F F TT F F
F T F T T
F T F F T T
F F T T T
F F T F F F F
F F F T T
F F F F T T

If we had used no shortcuts, we would have had to write 256 ‘T’s or ‘F’s on
this table. Using shortcuts, we only had to write 37. We have saved ourselves
a lot of work.

I have been discussing shortcuts in testing for tautological validity. But
exactly the same shortcuts can be used in testing for tautological entailment.
By employing a similar notion of bad lines, you can save yourself a huge amount
of work.

Practice exercises

A. Using shortcuts, determine whether each sentence is a tautology, a contra-
diction, or neither.

1. ¬B ∧B
2. ¬D ∨D
3. (A ∧B) ∨ (B ∧A)
4. ¬[A → (B → A)]
5. A ↔ [A → (B ∧ ¬B)]
6. ¬(A ∧B) ↔ A
7. A → (B ∨ C)
8. (A ∧ ¬A) → (B ∨ C)
9. (B ∧D) ↔ [A ↔ (A ∨ C)]
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Sometimes, we do not need to know what happens on every line of a truth
table. Sometimes, just a single line or two will do.

Tautology. In order to show that a sentence is a tautology, we need to show
that it is true on every valuation. That is to say, we need to know that it comes
out true on every line of the truth table. So we need a complete truth table.

To show that a sentence is not a tautology, however, we only need one line:
a line on which the sentence is false. Therefore, in order to show that some
sentence is not a tautology, it is enough to provide a single valuation—a single
line of the truth table—which makes the sentence false.

Suppose that we want to show that the sentence ‘(U ∧ T ) → (S ∧ W )’ is
not a tautology. We set up a partial truth table:

S T U W (U ∧T )→ (S∧W )
F

We have only left space for one line, rather than 16, since we are only looking
for one line, on which the sentence is false. For just that reason, we have filled
in ‘F’ for the entire sentence.

The main logical operator of the sentence is a conditional. In order for the
conditional to be false, the antecedent must be true and the consequent must
be false. So we fill these in on the table:

S T U W (U ∧T )→ (S∧W )
T F F

In order for the ‘(U ∧ T )’ to be true, both ‘U ’ and ‘T ’ must be true.

S T U W (U ∧T )→ (S∧W )
T T T T T F F

Now we just need to make ‘(S∧W )’ false. To do this, we need to make at least
one of ‘S’ and ‘W ’ false. We can make both ‘S’ and ‘W ’ false if we want. All
that matters is that the whole sentence turns out false on this line. Making an
arbitrary decision, we finish the table in this way:

S T U W (U ∧T )→ (S∧W )
F T T F T T T F F F F

So we now have a partial truth table, which shows that ‘(U ∧T ) → (S ∧W )’ is
not a tautology. Put otherwise, we have shown that there is a valuation which
makes ‘(U ∧ T ) → (S ∧W )’ false, namely, the valuation which makes ‘S’ false,
‘T ’ true, ‘U ’ true and ‘W ’ false.
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Contradiction. Showing that something is a contradiction requires a com-
plete truth table: we need to show that there is no valuation which makes the
sentence true; that is, we need to show that the sentence is false on every line
of the truth table.

However, to show that something is not a contradiction, all we need to do
is find a valuation which makes the sentence true, and a single line of a truth
table will suffice. We can illustrate this with the same example.

S T U W (U ∧T )→ (S∧W )
T

To make the sentence true, it will suffice to ensure that the antecedent is false.
Since the antecedent is a conjunction, we can just make one of them false.
For no particular reason, we choose to make ‘U ’ false; and then we can assign
whatever truth value we like to the other atomic sentences.

S T U W (U ∧T )→ (S∧W )
F T F F F F T T F F F

Tautological equivalence. To show that two sentences are tautologically
equivalent, we must show that the sentences have the same truth value on
every valuation. So this requires a complete truth table.

To show that two sentences are not tautologically equivalent, we only need
to show that there is a valuation on which they have different truth values. So
this requires only a one-line partial truth table: make the table so that one
sentence is true and the other false.

Consistency. To show that some sentences are jointly consistent, we must
show that there is a valuation which makes all of the sentence true. So this
requires only a partial truth table with a single line.

To show that some sentences are jointly inconsistent, we must show that
there is no valuation which makes all of the sentence true. So this requires a
complete truth table: You must show that on every row of the table at least
one of the sentences is false.

Validity. To show that an argument is valid, we must show that there is no
valuation which makes all of the premises true and the conclusion false. So this
requires a complete truth table. (Likewise for entailment.)

To show that argument is invalid, we must show that there is a valuation
which makes all of the premises true and the conclusion false. So this requires
only a one-line partial truth table on which all of the premises are true and the
conclusion is false. (Likewise for a failure of entailment.)

This table summarises what is required:

Yes No
tautology? complete truth table one-line partial truth table
contradiction? complete truth table one-line partial truth table
equivalent? complete truth table one-line partial truth table
consistent? one-line partial truth table complete truth table
valid? complete truth table one-line partial truth table
entailment? complete truth table one-line partial truth table
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Practice exercises

A. Use complete or partial truth tables (as appropriate) to determine whether
these pairs of sentences are tautologically equivalent:

1. A, ¬A
2. A, A ∨A
3. A → A, A ↔ A
4. A ∨ ¬B, A → B
5. A ∧ ¬A, ¬B ↔ B
6. ¬(A ∧B), ¬A ∨ ¬B
7. ¬(A → B), ¬A → ¬B
8. (A → B), (¬B → ¬A)

B. Use complete or partial truth tables (as appropriate) to determine whether
these sentences are jointly tautologically consistent, or jointly tautologically
inconsistent:

1. A ∧B, C → ¬B, C
2. A → B, B → C, A, ¬C
3. A ∨B, B ∨ C, C → ¬A
4. A, B, C, ¬D, ¬E, F

C. Use complete or partial truth tables (as appropriate) to determine whether
each argument is valid or invalid:

1. A ∨
[
A → (A ↔ A)

]
.˙. A

2. A ↔ ¬(B ↔ A) .˙. A
3. A → B,B .˙. A
4. A ∨B,B ∨ C,¬B .˙. A ∧ C
5. A ↔ B,B ↔ C .˙. A ↔ C



Chapter 4

First-order logic

54



Building blocks of FOL 14

14.1 The need to decompose sentences

Consider the following argument, which is obviously valid in English:

Willard is a logician. All logicians wear funny hats. So Willard
wears a funny hat.

To symbolise it in TFL, we might offer a symbolisation key:

L: Willard is a logician.
A: All logicians wear funny hats.
F : Willard wears a funny hat.

And the argument itself becomes:

L,A .˙. F

This is invalid in TFL. But the original English argument is clearly valid.
The problem is not that we have made a mistake while symbolising the

argument. This is the best symbolisation we can give in TFL. The problem
lies with TFL itself. ‘All logicians wear funny hats’ is about both logicians and
hat-wearing. By not retaining this structure in our symbolisation, we lose the
connection between Willard’s being a logician and Willard’s wearing a hat.

The basic units of TFL are atomic sentences, and TFL cannot decompose
these. To symbolise arguments like the preceding one, we will have to develop
a new logical language which will allow us to split the atom. We will call this
language first-order logic, or FOL.

The details of FOL will be explained throughout this chapter, but here is
the basic idea for splitting the atom.

First, we have names. In FOL, we indicate these with lowercase italic
letters. For instance, we might let ‘b’ stand for Bertie, or let ‘i’ stand for
Willard.

Second, we have predicates. English predicates are expressions like ‘ is
a dog’ or ‘ is a logician’. These are not complete sentences by themselves.
In order to make a complete sentence, we need to fill in the gap. We need
to say something like ‘Bertie is a dog’ or ‘Willard is a logician’. In FOL,
we indicate predicates with uppercase italic letters. For instance, we might
let the FOL predicate ‘D’ symbolise the English predicate ‘ is a dog’.
Then the expression ‘Db’ will be a sentence in FOL, which symbolises the
English sentence ‘Bertie is a dog’. Equally, we might let the FOL predicate ‘L’
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symbolise the English predicate ‘ is a logician’. Then the expression ‘Li’
will symbolise the English sentence ‘Willard is a logician’.

Third, we have quantifiers. For instance, ‘∃’ will roughly convey ‘There
is at least one . . . ’. So we might symbolise the English sentence ‘there is a
dog’ with the FOL sentence ‘∃xDx’, which we would naturally read out-loud
as ‘there is at least one thing, x, such that x is a dog’.

That is the general idea. But FOL is significantly more subtle than TFL.
So we will come at it slowly.

14.2 Names

In English, a singular term is a word or phrase that refers to a specific person,
place, or thing. The word ‘dog’ is not a singular term, because there are a
great many dogs. The phrase ‘Bertie’ is a singular term, because it refers to
a specific terrier. Likewise, the phrase ‘Philip’s dog Bertie’ is a singular term,
because it refers to a specific little terrier.

Proper names are a particularly important kind of singular term. These
are expressions that pick out individuals without describing them. The name
‘Emerson’ is a proper name, and the name alone does not tell you anything
about Emerson. Of course, some names are traditionally given to boys and
other are traditionally given to girls. If ‘Hilary’ is used as a singular term,
you might guess that it refers to a woman. You might, though, be guessing
wrongly. Indeed, the name does not necessarily mean that the person referred
to is even a person: Hilary might be a giraffe, for all you could tell just from
the name.

In FOL, our names are lower-case letters ‘a’ through to ‘r’. We can add
subscripts if we want to use some letter more than once. So here are some
singular terms in FOL:

a, b, c, . . . , r, a1, f32, j390,m12

These should be thought of along the lines of proper names in English. But
with one difference. ‘Tim Button’ is a proper name, but there are several people
with this name. (Equally, there are at least two people with the name ‘P.D.
Magnus’.) We live with this kind of ambiguity in English, allowing context
to individuate the fact that ‘Tim Button’ refers to the lecturer of this course,
and not some other guy. In FOL, we do not tolerate any such ambiguity. Each
name must pick out exactly one thing. (However, two different names may pick
out the same thing.)

As with TFL, we can provide symbolisation keys. These indicate, tem-
porarily, what a name shall pick out. So we might offer:

e: Elsa
g: Gregor
m: Marybeth

14.3 Predicates

The simplest predicates are properties of individuals. They are things you can
say about an object. Here are some examples of English predicates:
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is a dog
is a member of Monty Python

A piano fell on

In general, you can think about predicates as things which combine with sin-
gular terms to make sentences. Conversely, you can start with sentences and
make predicates out of them by removing terms. Consider the sentence, ‘Vin-
nie borrowed the family car from Nunzio.’ By removing a singular term, we
can obtain any of three different predicates:

borrowed the family car from Nunzio
Vinnie borrowed from Nunzio
Vinnie borrowed the family car from

FOL predicates are capital letters A through Z, with or without subscripts.
We might write a symbolisation key for predicates thus:

Ax: x is angry
Hx: x is happy

(Why the subscripts on the gaps? We shall return to this in §16.)
If we combine our two symbolisation keys, we can start to symbolise some

English sentences that use these names and predicates in combination. For
example, consider the English sentences:

1. Elsa is angry.
2. Gregor and Marybeth are angry.
3. If Elsa is angry, then so are Gregor and Marybeth.

Sentence 1 is straightforward: we symbolise it by ‘Ae’.
Sentence 2: this is a conjunction of two simpler sentences. The simple

sentences can be symbolised just by ‘Ag’ and ‘Am’. Then we help ourselves to
our resources from TFL, and symbolise the entire sentence by ‘Ag∧Am’. This
illustrates an important point: FOL has all of the truth-functional connectives
of TFL.

Sentence 3: this is a conditional, whose antecedent is sentence 1 and whose
consequent is sentence 2. So we can symbolise this with ‘Ae → (Ag ∧Am)’.

14.4 Quantifiers

We are now ready to introduce quantifiers. Consider these sentences:

4. Everyone is happy.
5. Someone is angry.

It might be tempting to symbolise sentence 4 as ‘He ∧ Hg ∧ Hm’. Yet this
would only say that Elsa, Gregor, and Marybeth are happy. We want to say
that everyone is happy, even those with no names. In order to do this, we
introduce the ‘∀’ symbol. This is called the universal quantifier.

A quantifier must always be followed by a variable. In FOL, variables
are italic lowercase letters ‘s’ through ‘z’, with or without subscripts. So we
might symbolise sentence 4 as ‘∀xHx’. The variable ‘x’ is serving as a kind of
placeholder. The expression ‘∀x’ intuitively means that you can pick anyone



14. Building blocks of FOL 58

and put them in as ‘x’. The subsequent ‘Hx’ indicates, of that thing you picked
out, that it is happy.

I should say that there is no special reason to use ‘x’ rather than some other
variable. The sentences ‘∀xHx’, ‘∀yHy’, ‘∀zHz’, and ‘∀x5Hx5’ use different
variables, but they will all be logically equivalent.

To symbolise sentence 5, we introduce another new symbol: the existen-
tial quantifier, ‘∃’. Like the universal quantifier, the existential quantifier
requires a variable. Sentence 5 can be symbolised by ‘∃xAx’. Whereas ‘∀xAx’
is read naturally as ‘for all x, x is angry’, ‘∃xAx’ is read naturally as ‘there
is something, x, such that x is angry’. Once again, the variable is a kind of
placeholder; we could just as easily have symbolised sentence 5 with ‘∃zAz’,
‘∃w256Aw256’, or whatever.

Some more examples will help. Consider these further sentences:

6. No one is angry.
7. There is someone who is not happy.
8. Not everyone is happy.

Sentence 6 can be paraphrased as, ‘It is not the case that someone is angry’.
We can then symbolise it using negation and an existential quantifier: ‘¬∃xAx’.
Yet sentence 6 could also be paraphrased as, ‘Everyone is not angry’. With
this in mind, it can be symbolised using negation and a universal quantifier:
‘∀x¬Ax’. Both of these are acceptable symbolisations. Indeed, it will transpire
that, in general, ∀x¬A is logically equivalent to ¬∃xA . (Notice that I have here
returned to the practice of using ‘A ’ as a metavariable, from §7.) Symbolising
a sentence one way, rather than the other, might seem more ‘natural’ in some
contexts, but it is not much more than a matter of taste.

Sentence 7 is most naturally paraphrased as, ‘There is some x, such that x
is not happy’. This then becomes ‘∃x¬Hx’. Of course, we could equally have
written ‘¬∀xHx’, which we would naturally read as ‘it is not the case that
everyone is happy’. And that would be a perfectly adequate symbolisation of
sentence 8.

14.5 Domains

Given the symbolisation key we have been using, ‘∀xHx’ symbolises ‘Everyone
is happy’. Who is included in this everyone? When we use sentences like
this in English, we usually do not mean everyone now alive on the Earth. We
certainly do not mean everyone who was ever alive or who will ever live. We
usually mean something more modest: everyone now in the building, everyone
enrolled in the ballet class, or whatever.

In order to eliminate this ambiguity, we will need to specify a domain. The
domain is the set of things that we are talking about. So if we want to talk
about people in Chicago, we define the domain to be people in Chicago. We
write this at the beginning of the symbolisation key, like this:

domain: people in Chicago

The quantifiers range over the domain. Given this domain, ‘∀x’ is to be read
roughly as ‘Every person in Chicago is such that. . . ’ and ‘∃x’ is to be read
roughly as ‘Some person in Chicago is such that. . . ’.
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In FOL, the domain must always include at least one thing. Moreover,
in English we can infer ‘something is angry’ from ‘Gregor is angry’. In FOL,
then, we shall want to be able to infer ‘∃xAx’ from ‘Ag’. So we shall insist
that each name must pick out exactly one thing in the domain. If we want to
name people in places beside Chicago, then we need to include those people in
the domain.

A domain must have at least one member. A name must pick out
exactly one member of the domain. But a member of the domain
may be picked out by one name, many names, or none at all.
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We now have all of the pieces of FOL. Symbolising more complicated sentences
will only be a matter of knowing the right way to combine predicates, names,
quantifiers, and connectives. There is a knack to this, and there is no substitute
for practice.

15.1 Dealing with syncategorematic adjectives

When we encounter a sentence like

1. Herbie is a white car

We can paraphrase this as ‘Herbie is white and Herbie is a car’. We can then
use a symbolisation key like:

Wx: x is white
Cx: x is a car
h: Herbie

This allows us to symbolise sentence 1 as ‘Wh ∧ Ch’. But now consider:

2. Damon Stoudamire is a short basketball player.
3. Damon Stoudamire is a man.
4. Damon Stoudamire is a short man.

Following the case of Herbie, we might try to use a symbolisation key like:

Sx: x is short
Bx: x is a basketball player
Mx: x is a man

d: Damon Stoudamire

Then we would symbolise sentence 2 with ‘Sd∧Bd’, sentence 3 with ‘Md’ and
sentence 4 with ‘Sd ∧ Md’. But that would be a terrible mistake! For this
now suggests that sentences 2 and 3 together entail sentence 4. But they do
not. Standing at 5’10”, Damon Stoudamire is one of the shortest professional
basketball players of all time, but he is nevertheless an averagely-tall man. The
point is that sentence 2 says that Damon is short qua basketball player, even
though he is of average height qua man. So you will need to symbolise ‘ is
a short basketball player’ and ‘ is a short man’ using completely different
predicates.

Similar examples abound. All footballers are people, but some good foot-
ballers are bad people. I might be an incompetent player of the cor anglais,
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but a competent individual. And so it goes. The moral is: when you see two
adjectives in a row, you need to ask yourself carefully whether they can be
treated as a conjunction or not.

15.2 Common quantifier phrases

Consider these sentences:

5. Every coin in my pocket is a quarter.
6. Some coin on the table is a dime.
7. Not all the coins on the table are dimes.
8. None of the coins in my pocket are dimes.

In providing a symbolisation key, we need to specify a domain. Since we are
talking about coins in my pocket and on the table, the domain must at least
contain all of those coins. Since we are not talking about anything besides
coins, we let the domain be all coins. Since we are not talking about any
specific coins, we do not need to need to deal with any names. So here is our
key:

domain: all coins
Px: x is in my pocket
Tx: x is on the table
Qx: x is a quarter
Dx: x is a dime

Sentence 5 is most naturally symbolised using a universal quantifier. The
universal quantifier says something about everything in the domain, not just
about the coins in my pocket. Sentence 5 can be paraphrased as ‘for any coin,
if that coin is in my pocket then it is a quarter’. So we can symbolise it as
‘∀x(Px → Qx)’.

Since sentence 5 is about coins that are both in my pocket and that are
quarters, it might be tempting to translate it using a conjunction. However,
the sentence ‘∀x(Px ∧ Qx)’ would symbolise the sentence ‘every coin is both
a quarter and in my pocket’. This obviously means something very different
than sentence 5. And so we see:

A sentence can be symbolised as ∀x(F x → Gx) if it can be para-
phrased in English as ‘every F is G’.

Sentence 6 is most naturally symbolised using an existential quantifier. It can
be paraphrased as ‘there is some coin which is both on the table and which is
a dime’. So we can symbolise it as ‘∃x(Tx ∧Dx)’.

Notice that we needed to use a conditional with the universal quantifier,
but we used a conjunction with the existential quantifier. Suppose we had
instead written ‘∃x(Tx → Dx)’. That would mean that there is some object
in the domain of which ‘(Tx → Dx)’ is true. Recall that, in TFL, A → B is
tautologically equivalent to ¬A ∨ B . This equivalence will also hold in FOL.
So ‘∃x(Tx → Dx)’ is true if there is some object in the domain, such that
‘(¬Tx ∨ Dx)’ is true of that object. That is, ‘∃x(Tx → Dx)’ is true if some
coin is either not on the table or is a dime. Of course there is a coin that



15. Sentences with one quantifier 62

is not on the table: there are coins lots of other places. So it is very easy for
‘∃x(Tx → Dx)’ to be true. A conditional will usually be the natural connective
to use with a universal quantifier, but a conditional within the scope of an
existential quantifier tends to say something very weak indeed. As a general
rule of thumb, do not put conditionals in the scope of existential quantifiers
unless you are sure that you need one.

A sentence can be symbolised as ∃x(F x ∧ Gx) if it can be para-
phrased in English as ‘some F is G’.

Sentence 7 can be paraphrased as, ‘It is not the case that every coin on the
table is a dime’. So we can symbolise it by ‘¬∀x(Tx → Dx)’. You might look at
sentence 7 and paraphrase it instead as, ‘Some coin on the table is not a dime’.
You would then symbolise it by ‘∃x(Tx ∧ ¬Dx)’. Although it is probably not
immediately obvious yet, these two sentences are logically equivalent. (This
is due to the logical equivalence between ¬∀xA and ∃x¬A , mentioned in §14,
along with the equivalence between ¬(A → B) and A ∧ ¬B .)

Sentence 8 can be paraphrased as, ‘It is not the case that there is some
dime in my pocket’. This can be symbolised by ‘¬∃x(Px∧Dx)’. It might also
be paraphrased as, ‘Everything in my pocket is a non-dime’, and then could
be symbolised by ‘∀x(Px → ¬Dx)’. Again the two symbolisations are logically
equivalent. Both are correct symbolisations of sentence 8.

15.3 Empty predicates

In §14, I emphasised that a name must pick out exactly one object in the
domain. However, a predicate need not apply to anything in the domain. A
predicate that applies to nothing in the domain is called an empty predicate.
This is worth exploring.

Suppose we want to symbolise these two sentences:

9. Every monkey knows sign language
10. Some monkey knows sign language

It is possible to write the symbolisation key for these sentences in this way:

domain: animals
Mx: x is a monkey.
Sx: x knows sign language.

Sentence 9 can now be symbolised by ‘∀x(Mx → Sx)’. Sentence 10 can be
symbolised as ‘∃x(Mx ∧ Sx)’.

It is tempting to say that sentence 9 entails sentence 10. That is, we might
think that it is impossible for it to be the case that every monkey knows sign lan-
guage, without it’s also being the case that some monkey knows sign language.
But this would be a mistake. It is possible for the sentence ‘∀x(Mx → Sx)’ to
be true even though the sentence ‘∃x(Mx ∧ Sx)’ is false.

How can this be? The answer comes from considering whether these sen-
tences would be true or false if there were no monkeys. If there were no monkeys
at all (in the domain), then ‘∀x(Mx → Sx)’ would be vacuously true: take any
monkey you like—it knows sign language! But if there were no monkeys at all
(in the domain), then ‘∃x(Mx ∧ Sx)’ would be false.
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Another example will help to bring this home. Suppose we extend the above
symbolisation key, by adding:

Rx: x is a refrigerator

Now consider the sentence ‘∀x(Rx → Mx)’. This symbolises ‘every refrigerator
is a monkey’. And this sentence is true, given our symbolisation key. This is
counterintuitive, since we do not want to say that there are a whole bunch of
refrigerator monkeys. It is important to remember, though, that ‘∀x(Rx →
Mx)’ is true iff any member of the domain that is a refrigerator is a monkey.
Since the domain is animals, there are no refrigerators in the domain. Again,
then, the sentence is vacuously true.

If you were actually dealing with the sentence ‘All refrigerators are mon-
keys’, then you would most likely want to include kitchen appliances in
the domain. Then the predicate ‘R’ would not be empty and the sentence
‘∀x(Rx → Mx)’ would be false.

When F is an empty predicate, a sentence ∀x(F x → . . .) will be
vacuously true.

15.4 Picking a domain

The appropriate symbolisation of an English language sentence in FOL will
depend on the symbolisation key. Choosing a key can be difficult. Suppose we
want to symbolise the English sentence:

11. Every rose has a thorn.

We might offer this symbolisation key:

Rx: x is a rose
Tx: x has a thorn

It is tempting to say that sentence 11 should be symbolised as ‘∀x(Rx → Tx)’.
But we have not yet chosen a domain. If the domain contains all roses, this
would be a good symbolisation. Yet if the domain is merely things on my
kitchen table, then ‘∀x(Rx → Tx)’ would only come close to covering the fact
that every rose on my kitchen table has a thorn. If there are no roses on my
kitchen table, the sentence would be trivially true. This is not what we want.
To symbolise sentence 11 adequately, we need to include all the roses in the
domain. But now we have two options.

First, we can restrict the domain to include all roses but only roses. Then
sentence 11 can, if we like, be symbolised with ‘∀xTx’. This is true iff every-
thing in the domain has a thorn; since the domain is just the roses, this is
true iff every rose has a thorn. By restricting the domain, we have been able
to symbolise our English sentence with a very short sentence of FOL. So this
approach can save us trouble, if every sentence that we want to deal with is
about roses.

Second, we can let the domain contain things besides roses: rhododendrons;
rats; rifles; whatevers. And we will certainly need to include a more expansive
domain if we simultaneously want to symbolise sentences like:
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12. Every cowboy sings a sad, sad song.

Our domain must now include both all the roses (so that we can symbolise
sentence 11) and all the cowboys (so that we can symbolise sentence 12). So
we might offer the following symbolisation key:

domain: people and plants
Cx: x is a cowboy
Sx: x sings a sad, sad song
Rx: x is a rose
Tx: x has a thorn

Now we will have to symbolise sentence 11 with ‘∀x(Rx → Tx)’, since ‘∀xTx’
would symbolise the sentence ‘every person or plant has a thorn’. Similarly,
we will have to symbolise sentence 12 with ‘∀x(Cx → Sx)’.

In general, the universal quantifier can be used to symbolise the English
expression ‘everyone’ if the domain only contains people. If there are people
and other things in the domain, then ‘everyone’ must be treated as ‘every
person’.

15.5 The utility of paraphrase

When symbolising English sentences in FOL, it is important to understand
the structure of the sentences you want to symbolise. What matters is the
final symbolisation in FOL, and sometimes you will be able to move from an
English language sentence directly to a sentence of FOL. Other times, it helps
to paraphrase the sentence one or more times. Each successive paraphrase
should move from the original sentence closer to something that you can finally
symbolise directly in FOL.

For the next several examples, we will use this symbolisation key:

domain: people
Bx: x is a bassist.
Rx: x is a rock star.
k: Kim Deal

Now consider these sentences:

13. If Kim Deal is a bassist, then she is a rock star.
14. If a person is a bassist, then she is a rock star.

The same words appear as the consequent in sentences 13 and 14 (‘. . . she is
a rock star’), but they mean very different things. To make this clear, it often
helps to paraphrase the original sentences, removing pronouns.

Sentence 13 can be paraphrased as, ‘If Kim Deal is a bassist, then Kim Deal
is a rockstar’. This can obviously be symbolised as ‘Bk → Rk’.

Sentence 14 must be paraphrased differently: ‘If a person is a bassist, then
that person is a rock star’. This sentence is not about any particular person,
so we need a variable. As a halfway house, we can paraphrase this as, ‘For any
person x, if x is a bassist, then x is a rockstar’. Now this can be symbolised as
‘∀x(Bx → Rx)’. This is the same sentence we would have used to symbolise
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‘Everyone who is a bassist is a rock star’. And on reflection, that is surely true
iff sentence 14 is true, as we would hope.

Consider these further sentences:

15. If anyone is a bassist, then Kim Deal is a rock star.
16. If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences 15 and 16 (‘If anyone
is a bassist. . .’). But it can be tricky to work out how to symbolise these two
uses. Again, paraphrase will come to our aid.

Sentence 15 can be paraphrased, ‘If there is at least one bassist, then Kim
Deal is a rock star’. It is now clear that this is a conditional whose antecedent
is a quantified expression; so we can symbolise the entire sentence with a con-
ditional as the main logical operator: ‘∃xBx → Rk’.

Sentence 16 can be paraphrased, ‘For all people x, if x is a bassist, then x is
a rock star’. Or, in more natural English, it can be paraphrased by ‘All bassists
are rock stars’. It is best symbolised as ‘∀x(Bx → Rx)’, just like sentence 14.

The moral is that the English words ‘any’ and ‘anyone’ should typically be
symbolised using quantifiers. And if you are having a hard time determining
whether to use an existential or a universal quantifier, try paraphrasing the
sentence with an English sentence that uses words besides ‘any’ or ‘anyone’.

15.6 Quantifiers and scope

Continuing the example, suppose I want to symbolise these sentences:

17. If everyone is a bassist, then Tim is a bassist
18. Everyone is such that, if she is a bassist, then Tim is a bassist.

To symbolise these sentences, I shall have to add a new name to the symboli-
sation key, namely:

b: Tim

Sentence 17 is a conditional, whose antecedent is ‘everyone is a bassist’. So
we will symbolise it with ‘∀xBx → Bb’. This sentence is necessarily true: if
everyone is indeed a bassist, then take any one you like—for example Tim—and
he will be a bassist.

Sentence 18, by contrast, might best be paraphrased by ‘every person x
is such that, if x is a bassist, then Tim is a bassist’. This is symbolised by
‘∀x(Bx → Bb)’. And this sentence is false. Kim Deal is a bassist. So ‘Bk’ is
true. But Tim is not a bassist, so ‘Bb’ is false. Accordingly, ‘Bk → Bb’ will
be false. So ‘∀x(Bx → Bb)’ will be false as well.

In short, ‘∀xBx → Bb’ and ‘∀x(Bx → Bb)’ are very different sentences. We
can explain the difference in terms of the scope of the quantifier. The scope
of quantification is very much like the scope of negation, which we considered
when discussing TFL, and it will help to explain it in this way.

In the sentence ‘¬Bk → Bb’, the scope of ‘¬’ is just the antecedent of the
conditional. We are saying something like: if ‘Bk’ is false, then ‘Bb’ is true.
Similarly, in the sentence ‘∀xBx → Bb’, the scope of ‘∀x’ is just the antecedent
of the conditional. We are saying something like: if ‘Bx’ is true of everything,
then ‘Bb’ is also true.
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In the sentence ‘¬(Bk → Bb)’, the scope of ‘¬’ is the entire sentence. We
are saying something like: ‘(Bk → Bb)’ is false. Similarly, in the sentence
‘∀x(Bx → Bb)’, the scope of ‘∀x’ is the entire sentence. We are saying some-
thing like: ‘(Bx → Bb)’ is true of everything.

The moral of the story is simple. When you are using conditionals, be very
careful to make sure that you have sorted out the scope correctly.

Practice exercises

A. Here are the syllogistic figures identified by Aristotle and his successors,
along with their medieval names:

• Barbara. All G are F. All H are G. So: All H are F
• Celarent. No G are F. All H are G. So: No H are F
• Ferio. No G are F. Some H is G. So: Some H is not F
• Darii. All G are F. Some H is G. So: Some H is F.
• Camestres. All F are G. No H are G. So: No H are F.
• Cesare. No F are G. All H are G. So: No H are F.
• Baroko. All F are G. Some H is not G. So: Some H is not F.
• Festino. No F are G. Some H are G. So: Some H is not F.
• Datisi. All G are F. Some G is H. So: Some H is F.
• Disamis. Some G is F. All G are H. So: Some H is F.
• Ferison. No G are F. Some G is H. So: Some H is not F.
• Bokardo. Some G is not F. All G are H. So: Some H is not F.
• Camenes. All F are G. No G are H So: No H is F.
• Dimaris. Some F is G. All G are H. So: Some H is F.
• Fresison. No F are G. Some G is H. So: Some H is not F.

Symbolise each argument in FOL.

B. Using the following symbolisation key:

domain: people
Kx: x knows the combination to the safe
Sx: x is a spy
V x: x is a vegetarian
h: Hofthor
i: Ingmar

symbolise the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.
2. No spy knows the combination to the safe.
3. No one knows the combination to the safe unless Ingmar does.
4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolisation key:

domain: all animals
Ax: x is an alligator.
Mx: x is a monkey.
Rx: x is a reptile.
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Zx: x lives at the zoo.
a: Amos
b: Bouncer
c: Cleo

symbolise each of the following sentences in FOL:

1. Amos, Bouncer, and Cleo all live at the zoo.
2. Bouncer is a reptile, but not an alligator.
3. Some reptile lives at the zoo.
4. Every alligator is a reptile.
5. Any animal that lives at the zoo is either a monkey or an alligator.
6. There are reptiles which are not alligators.
7. If any animal is an reptile, then Amos is.
8. If any animal is an alligator, then it is a reptile.

D. For each argument, write a symbolisation key and symbolise the argument
in FOL.

1. Willard is a logician. All logicians wear funny hats. So Willard wears a
funny hat

2. Nothing on my desk escapes my attention. There is a computer on my
desk. As such, there is a computer that does not escape my attention.

3. All my dreams are black and white. Old TV shows are in black and
white. Therefore, some of my dreams are old TV shows.

4. Neither Holmes nor Watson has been to Australia. A person could see
a kangaroo only if they had been to Australia or to a zoo. Although
Watson has not seen a kangaroo, Holmes has. Therefore, Holmes has
been to a zoo.

5. No one expects the Spanish Inquisition. No one knows the troubles I’ve
seen. Therefore, anyone who expects the Spanish Inquisition knows the
troubles I’ve seen.

6. All babies are illogical. Nobody who is illogical can manage a crocodile.
Berthold is a baby. Therefore, Berthold is unable to manage a crocodile.
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So far, we have only considered sentences that require one-place predicates and
one quantifier. The full power of FOL really comes out when we start to use
many-place predicates and multiple quantifiers. For this insight, we largely
have Gottlob Frege (1879) to thank, but also Peirce.

16.1 Many-placed predicates

All of the predicates that we have considered so far concern properties that
objects might have. The predicates have one gap in them, and to make a
sentence, we simply need to slot in one name. They are one-place predicates.

But other predicates concern the relation between two things. Here are
some examples of relational predicates in English:

loves
is to the left of
is in debt to

These are two-place predicates. They need to be filled in with two terms
in order to make a sentence. Conversely, if we start with an English sentence
containing many singular terms, we can remove two singular terms, to obtain
different two-place predicates. Consider the sentence ‘Vinnie borrowed the
family car from Nunzio’. By deleting two singular terms, we can obtain any of
three different two-place predicates

Vinnie borrowed from
borrowed the family car from
borrowed from Nunzio

And by removing all three singular terms, we obtain a three-place predicate:

borrowed from

Indeed, there is no in principle upper limit on the number of places that our
predicates may contain.

Now there is a little foible with the above. I have used the same symbol,
‘ ’, to indicate a gap formed by deleting a term from a sentence. However
(as Frege emphasised), these are different gaps. To obtain a sentence, we can
fill them in with the same term, but we can equally fill them in with different
terms, and in various different orders. The following are all perfectly good
sentences, and they all mean very different things:

68
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Karl loves Karl
Karl loves Imre
Imre loves Karl
Imre loves Imre

The point is that we need to keep track of the gaps in predicates, so that we
can keep track of how we are filling them in.

To keep track of the gaps, I shall label them. The labelling conventions I
shall adopt are best explained by example. Suppose I want to symbolise the
following sentences:

1. Karl loves Imre.
2. Imre loves himself.
3. Karl loves Imre, but not vice versa.
4. Karl is loved by Imre.

I will start with the following representation key:

domain: people
i: Imre
k: Karl

Lxy: x loves y

Sentence 1 will now be symbolised by ‘Lki’.
Sentence 2 can be paraphrased as ‘Imre loves Imre’. It can now be symbol-

ised by ‘Lii’.
Sentence 3 is a conjunction. We might paraphrase it as ‘Karl loves Imre,

and Imre does not love Karl’. It can now be symbolised by ‘Lki ∧ ¬Lik’.
Sentence 4 might be paraphrased by ‘Imre loves Karl’. It can then be

symbolised by ‘Lik’. Of course, this slurs over the difference in tone between
the active and passive voice; such nuances are lost in FOL.

This last example, though, highlights something important. Suppose we
add to our symbolisation key the following:

Mxy: y loves x

Here, we have used the same English word (‘loves’) as we used in our symboli-
sation key for ‘Lxy’. However, we have swapped the order of the gaps around
(just look closely at those little subscripts!) So ‘Mki’ and ‘Lik’ now both sym-
bolise ‘Imre loves Karl’. ‘Mik’ and ‘Lki’ now both symbolise ‘Karl loves Imre’.
Since love can be unrequited, these are very different claims.

The moral is simple. When we are dealing with predicates with more than
one place, we need to pay careful attention to the order of the places.

16.2 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is potentially ambiguous.
It might mean either of the following:

5. For every person x, there is some person that x loves
6. There is some particular person whom every person loves
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Sentence 5 can be symbolised by ‘∀x∃yLxy’, and would be true of a love-
triangle. For example, suppose that our domain of discourse is restricted to
Imre, Juan and Karl. Suppose also that Karl loves Imre but not Juan, that
Imre loves Juan but not Karl, and that Juan loves Karl but not Imre. Then
sentence 5 is true.

Sentence 6 is symbolised by ‘∃y∀xLxy’. Sentence 6 is not true in the situ-
ation just described. Again, suppose that our domain of discourse is restricted
to Imre, Juan and Karl. Then this requires that all of Juan, Imre and Karl
converge on (at least) one object of love.

The point of the example is to illustrate that the order of the quantifiers
matters a great deal. Indeed, to switch them around is called a quantifier shift
fallacy. Here is an example, which comes up in various forms throughout the
philosophical literature:

For every person, there is some truth they cannot know. (∀∃)
So: There is some truth, that no person can know. (∃∀)

This argument form is obviously invalid. It’s just as bad as:1

Every dog has its day. (∀∃)
So: There is a day for all the dogs. (∃∀)

The moral is: take great care with the order of quantification.

16.3 Stepping-stones to symbolisation

Once we have the possibility of multiple quantifiers and many-place predicates,
representation in FOL can quickly start to become a bit tricky. When you
are trying to symbolise a complex sentence, I recommend laying down several
stepping stones. As usual, this idea is best illustrated by example. Consider
this representation key:

domain: people and dogs
Dx: x is a dog
Fxy: x is a friend of y

Oxy: x owns y

g: Geraldo

And now let’s try to symbolise these sentences:

7. Geraldo is a dog owner.
8. Someone is a dog owner.
9. All of Geraldo’s friends are dog owners.

10. Every dog owner is the friend of a dog owner.
11. Every dog owner’s friend owns a dog of a friend.

Sentence 7 can be paraphrased as, ‘There is a dog that Geraldo owns’. This
can be symbolised by ‘∃x(Dx ∧Ogx)’.

Sentence 8 can be paraphrased as, ‘There is some y such that y is a dog
owner’. Dealing with part of this, we might write ‘∃y(y is a dog owner)’. Now

1Thanks to Rob Trueman for the example.
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the fragment we have left as ‘y is a dog owner’ is much like sentence 7, except
that it is not specifically about Geraldo. So we can symbolise sentence 8 by:

∃y∃x(Dx ∧Oyx)

I need to pause to clarify something here. In working out how to symbolise
the last sentence, we wrote down ‘∃y(y is a dog owner)’. To be very clear: this
is neither an FOL sentence nor an English sentence: it uses bits of FOL (‘∃’,
‘y’) and bits of English (‘dog owner’). It is really is just a stepping-stone on
the way to symbolising the entire English sentence with a FOL sentence. You
should regard it as a bit of rough-working-out, on a par with the doodles that
you might absent-mindedly draw in the margin of this book, whilst you are
concentrating fiercely on some problem.

Sentence 9 can be paraphrased as, ‘Everyone who is a friend of Geraldo is
a dog owner’. Using our stepping-stone tactic, we might write

∀x
[
Fxg → x is a dog owner

]
Now the fragment that we have left to deal with, ‘x is a dog owner’, is struc-
turally just like sentence 7. But it would be a mistake for us simply to write

∀x
[
Fxg → ∃x(Dx ∧Oxx)

]
for we would here have a clash of variables. The scope of the universal quan-
tifier, ‘∀x’, is the entire conditional, so the ‘x’ in ‘Dx’ should be governed by
that. But ‘Dx’ also falls under the scope of the existential quantifier ‘∃x’, so
the ‘x’ in ‘Dx’ should be governed by that. And now confusion reigns: which
‘x’ are we talking about? Suddenly the sentence would be ambiguous (if it is
even meaningful at all), and logicians hate ambiguity. The broad moral is that
a single variable cannot serve two masters simultaneously.

To continue our symbolisation, then, we must choose some different variable
for our existential quantifier. What we want is something like:

∀x
[
Fxg → ∃z(Dz ∧Oxz)

]
and this adequately symbolises sentence 9.

Sentence 10 can be paraphrased as ‘For any x that is a dog owner, there is a
dog owner who is a friend of x’. Using our stepping-stone tactic, this becomes

∀x
[
x is a dog owner → ∃y(y is a dog owner ∧ Fyx)

]
Completing the symbolisation, we end up with

∀x
[
∃z(Dz ∧Oxz) → ∃y

(
∃z(Dz ∧Oyz) ∧ Fyx

)]
Note that we have used the same letter, ‘z’, in both the antecedent and the
consequent of the conditional, but that these are governed by two different
quantifiers. This is ok: there is no clash here, because is clear which quan-
tifier the letter falls under. We might graphically represent the scope of the
quantifiers thus:

scope of ‘∀x’︷ ︸︸ ︷
∀x

[ scope of 1st ‘∃z’︷ ︸︸ ︷
∃z(Dz ∧Oxz) →

scope of ‘∃y’︷ ︸︸ ︷
∃y(

scope of 2nd ‘∃z’︷ ︸︸ ︷
∃z(Dz ∧Oyz)∧Fyx)

]
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This shows that no variable is being forced to serve two masters simultaneously.
Sentence 11 is the trickiest yet. First we paraphrase it as ‘For any x that

is a friend of a dog owner, x owns a dog which is also owned by a friend of x’.
Using our stepping-stone tactic, this becomes:

∀x
[
x is a friend of a dog owner →

x owns a dog which is owned by a friend of x
]

Breaking this down a bit more:

∀x
[
∃y(Fxy ∧ y is a dog owner) →

∃y(Dy ∧Oxy ∧ y is owned by a friend of x)
]

And a bit more:

∀x
[
∃y(Fxy ∧ ∃z(Dz ∧Oyz)) → ∃y(Dy ∧Oxy ∧ ∃z(Fzx ∧Ozy))

]
And we are done!

Practice exercises

A. Using this symbolisation key:

domain: all animals
Ax: x is an alligator
Mx: x is a monkey
Rx: x is a reptile
Zx: x lives at the zoo
Lxy: x loves y

a: Amos
b: Bouncer
c: Cleo

symbolise each of the following sentences in FOL:

1. If Cleo loves Bouncer, then Bouncer is a monkey.
2. If both Bouncer and Cleo are alligators, then Amos loves them both.
3. Cleo loves a reptile.
4. Bouncer loves all the monkeys that live at the zoo.
5. All the monkeys that Amos loves love him back.
6. Every monkey that Cleo loves is also loved by Amos.
7. There is a monkey that loves Bouncer, but sadly Bouncer does not recip-

rocate this love.

B. Using the following symbolisation key:

domain: all animals
Dx: x is a dog
Sx: x likes samurai movies

Lxy: x is larger than y

b: Bertie



16. Multiple generality 73

e: Emerson
f : Fergis

symbolise the following sentences in FOL:

1. Bertie is a dog who likes samurai movies.
2. Bertie, Emerson, and Fergis are all dogs.
3. Emerson is larger than Bertie, and Fergis is larger than Emerson.
4. All dogs like samurai movies.
5. Only dogs like samurai movies.
6. There is a dog that is larger than Emerson.
7. If there is a dog larger than Fergis, then there is a dog larger than Emer-

son.
8. No animal that likes samurai movies is larger than Emerson.
9. No dog is larger than Fergis.

10. Any animal that dislikes samurai movies is larger than Bertie.
11. There is an animal that is between Bertie and Emerson in size.
12. There is no dog that is between Bertie and Emerson in size.
13. No dog is larger than itself.
14. Every dog is larger than some dog.
15. There is an animal that is smaller than every dog.
16. If there is an animal that is larger than any dog, then that animal does

not like samurai movies.

C. Using the following symbolisation key:

domain: people and dishes at a potluck
Rx: x has run out.
Tx: x is on the table.
Fx: x is food.
Px: x is a person.
Lxy: x likes y.

e: Eli
f : Francesca
g: the guacamole

symbolise the following English sentences in FOL:

1. All the food is on the table.
2. If the guacamole has not run out, then it is on the table.
3. Everyone likes the guacamole.
4. If anyone likes the guacamole, then Eli does.
5. Francesca only likes the dishes that have run out.
6. Francesca likes no one, and no one likes Francesca.
7. Eli likes anyone who likes the guacamole.
8. Eli likes anyone who likes the people that he likes.
9. If there is a person on the table already, then all of the food must have

run out.

D. Using the following symbolisation key:

domain: people
Dx: x dances ballet.
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Fx: x is female.
Mx: x is male.
Cxy: x is a child of y.
Sxy: x is a sibling of y.

e: Elmer
j: Jane
p: Patrick

symbolise the following arguments in FOL:

1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s sons dance ballet.
6. Patrick has no sons.
7. Jane is Elmer’s niece.
8. Patrick is Elmer’s brother.
9. Patrick’s brothers have no children.

10. Jane is an aunt.
11. Everyone who dances ballet has a brother who also dances ballet.
12. Every woman who dances ballet is the child of someone who dances ballet.
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Consider this sentence:

1. Pavel owes money to everyone

Let the domain be people; this will allow us to translate ‘everyone’ as a universal
quantifier. Offering the symbolisation key:

Oxy: x owes money to y

p: Pavel

we can symbolise sentence 1 by ‘∀xOpx’. But this has a (perhaps) odd con-
sequence. It requires that Pavel owes money to every member of the domain
(whatever the domain may be). The domain certainly includes Pavel. So this
entails that Pavel owes money to himself.

Perhaps we meant to say:

2. Pavel owes money to everyone else
3. Pavel owes money to everyone other than Pavel
4. Pavel owes money to everyone except Pavel himself

But we do not know how to deal with the italicised words yet. The solution is
to add another symbol to FOL.

17.1 Adding identity

The symbol ‘=’ is a two-place predicate. Since it is to have a special meaning,
we shall write it a bit differently: we put it between two terms, rather than
out front. And it does have a very particular meaning. We always adopt the
following symbolisation key:

x = y: x is identical to y

This does not mean merely that the objects in question are indistinguishable,
or that all of the same things are true of them. Rather, it means that the
objects in question are the very same object.

Now suppose we want to symbolise this sentence:

5. Pavel is Mister Checkov.

Let us add to our symbolisation key:

c: Mister Checkov
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Now sentence 5 can be symbolised as ‘p = c’. This means that the names ‘p’
and ‘c’ both name the same thing.

We can also now deal with sentences 2–4. All of these sentences can be para-
phrased as ‘Everyone who is not Pavel is owed money by Pavel’. Paraphrasing
some more, we get: ‘For all x, if x is not Pavel, then x is owed money by Pavel’.
Now that we are armed with our new identity symbol, we can symbolise this
as ‘∀x(¬x = p → Opx)’.

This last sentence contains the formula ‘¬x = p’. And that might look a bit
strange, because the symbol that comes immediately after the ‘¬’ is a variable,
rather than a predicate. But this is no problem. We are simply negating the
entire formula, ‘x = p’.

In addition to sentences that use the word ‘else’, ‘other than’ and ‘except’,
identity will be helpful when symbolising some sentences that contain the words
‘besides’ and ‘only.’ Consider these examples:

6. No one besides Pavel owes money to Hikaru.
7. Only Pavel owes Hikaru money.

Letting ‘h’ name Hikaru, sentence 6 can be paraphrased as, ‘No one who is not
Pavel owes money to Hikaru’. This can be symbolised by ‘¬∃x(¬x = p∧Oxh)’.
Equally, sentence 6 can be paraphrased as ‘for all x, if x owes money to Hikaru,
then x is Pavel’. Then it can be symbolised as ‘∀x(Oxh → x = p)’.

Sentence 7 can be treated similarly. But there is one subtlety here. Do
either sentence 6 or 7 entail that Pavel himself owes money to Hikaru?

17.2 There are at least. . .

We can also use identity to say how many things there are of a particular kind.
For example, consider these sentences:

8. There is at least one apple
9. There are at least two apples

10. There are at least three apples

We shall use the symbolisation key:

Ax: x is an apple

Sentence 8 does not require identity. It can be adequately symbolised by
‘∃xAx’: There is some apple; perhaps many, but at least one.

It might be tempting to also translate sentence 9 without identity. Yet
consider the sentence ‘∃x∃y(Ax ∧ Ay)’. Roughly, this says that there is some
apple x in the domain and some apple y in the domain. Since nothing precludes
these from being one and the same apple, this would be true even if there were
only one apple. In order to make sure that we are dealing with different apples,
we need an identity predicate. Sentence 9 needs to say that the two apples that
exist are not identical, so it can be symbolised by ‘∃x∃y(Ax ∧Ay ∧ ¬x = y)’.

Sentence 10 requires talking about three different apples. Now we need
three existential quantifiers, and we need to make sure that each will pick out
something different: ‘∃x∃y∃z(Ax ∧Ay ∧Az ∧ ¬x = y ∧ ¬y = z ∧ ¬x = z)’.
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17.3 There are at most. . .

Now consider these sentences:

11. There is at most one apple
12. There are at most two apples

Sentence 11 can be paraphrased as, ‘It is not the case that there are at least
two apples’. This is just the negation of sentence 9:

¬∃x∃y(Ax ∧Ay ∧ ¬x = y)

But sentence 11 can also be approached in another way. It means that if you
pick out an object and it’s an apple, and then you pick out an object and it’s
also an apple, you must have picked out the same object both times. With this
in mind, it can be symbolised by

∀x∀y
[
(Ax ∧Ay) → x = y

]
The two sentences will turn out to be logically equivalent.

In a similar way, sentence 12 can be approached in two equivalent ways. It
can be paraphrased as, ‘It is not the case that there are three or more distinct
apples’, so we can offer:

¬∃x∃y∃z(Ax ∧Ay ∧Az ∧ ¬x = y ∧ ¬y = z ∧ ¬x = z)

Or, we can read it as saying that if you pick out an apple, and an apple, and
an apple, then you will have picked out (at least) one of these objects more
than once. Thus:

∀x∀y∀z
[
(Ax ∧Ay ∧Az) → (x = y ∨ x = z ∨ y = z)

]
17.4 There are exactly. . .

We can now consider precise statements, like:

13. There is exactly one apple.
14. There are exactly two apples.
15. There are exactly three apples.

Sentence 13 can be paraphrased as, ‘There is at least one apple and there is at
most one apple’. This is just the conjunction of sentence 8 and sentence 11.
So we can offer:

∃xAx ∧ ∀x∀y
[
(Ax ∧Ay) → x = y

]
But it is perhaps more straightforward to paraphrase sentence 13 as, ‘There is
a thing x which is an apple, and everything which is an apple is just x itself’.
Thought of in this way, we offer:

∃x
[
Ax ∧ ∀y(Ay → x = y)

]
Similarly, sentence 14 may be paraphrased as, ‘There are at least two apples,
and there are at most two apples’. Thus we could offer

∃x∃y(Ax∧Ay ∧¬x = y)∧∀x∀y∀z
[
(Ax∧Ay ∧Az) → (x = y ∨ x = z ∨ y = z)

]
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More efficiently, though, we can paraphrase it as ‘There are at least two differ-
ent apples, and every apple is one of those two apples’. Then we offer:

∃x∃y
[
Ax ∧Ay ∧ ¬x = y ∧ ∀z(Az → (x = z ∨ y = z)

]
Finally, consider these sentence:

16. There are exactly two things
17. There are exactly two objects

It might be tempting to add a predicate to our symbolisation key, to symbolise
the English predicate ‘ is a thing’ or ‘ is an object’. But this is
unnecessary. Words like ‘thing’ and ‘object’ do not sort wheat from chaff: they
apply trivially to everything, which is to say, they apply trivially to every thing.
So we can symbolise either sentence with either of the following:

∃x∃y¬x = y ∧ ¬∃x∃y∃z(¬x = y ∧ ¬y = z ∧ ¬x = z)
∃x∃y

[
¬x = y ∧ ∀z(x = z ∨ y = z)

]
Practice exercises

A. Explain why:

• ‘∃x∀y(Ay ↔ x = y)’ is a good symbolisation of ‘there is exactly one
apple’.

• ‘∃x∃y
[
¬x = y ∧ ∀z(Az ↔ (x = z ∨ y = z)

]
’ is a good symbolisation of

‘there are exactly two apples’.
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Consider sentences like:

1. Nick is the traitor.
2. The traitor went to Cambridge.
3. The traitor is the deputy

These are definite descriptions: they are meant to pick out a unique object.
They should be contrasted with indefinite descriptions, such as ‘Nick is a
traitor’. They should equally be contrasted with generics, such as ‘The whale
is a mammal’ (it’s inappropriate to ask which whale). The question we face is:
how should we deal with definite descriptions in FOL?

18.1 Treating definite descriptions as terms

One option would be to introduce new names whenever we come across a defi-
nite description. This is probably not a great idea. We know that the traitor—
whoever it is—is indeed a traitor. We want to preserve that information in our
symbolisation.

A second option would be to use a new definite description operator, such
as ‘ ι’. The idea would be to symbolise ‘the F’ as ‘ ιxFx’; or to symbolise ‘the
G’ as ‘ ιxGx’, etc. Expression of the form ιxAx would then behave like names.
If we followed this path, then using the following symbolisation key:

domain: people
Tx: x is a traitor
Dx: x is a deputy
Cx: x went to Cambridge
n: Nick

We could symbolise sentence 1 with ‘ ιxTx = n’, sentence 2 with ‘C ιxTx’, and
sentence 3 with ‘ ιxTx = ιxDx’.

However, it would be nice if we didn’t have to add a new symbol to FOL.
And indeed, we might be able to make do without one.

18.2 Russell’s analysis

Bertrand Russell offered an analysis of definite descriptions. Very briefly put,
he observed that, when we say ‘the F’ in the context of a definite description,
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our aim is to pick out the one and only thing that is F (in the appropriate
context). Thus Russell analysed the notion of a definite description as follows:1

the F is G iff there is at least one F, and

there is at most one F, and

every F is G

Note a very important feature of this analysis: ‘the’ does not appear on the
right-side of the equivalence. Russell is aiming to provide an understanding of
definite descriptions, in terms that do not presuppose them.

Now, one might worry that I can say ‘the table is brown’ without implying
that there is one and only one table in the universe. But this is not (yet)
a fantastic counterexample to Russell’s analysis. The domain of discourse is
likely to be restricted by context (e.g. to objects in my line of sight).

If we accept Russell’s analysis of definite descriptions, then we can symbolise
sentences of the form ‘the F is G’ using our strategy for numerical quantification
in FOL. After all, we can deal with the three conjuncts on the right-hand side
of Russell’s analysis as follows:

∃xFx ∧ ∀x∀y((Fx ∧ Fy) → x = y) ∧ ∀x(Fx → Gx)

In fact, we could express the same point rather more crisply, by recognising
that the first two conjuncts just amount to the claim that there is exactly one
F, and that the last conjunct tells us that that object is F. So, equivalently, we
could offer:

∃x
[
Fx ∧ ∀y(Fy → x = y) ∧Gx

]
Using these sorts of techniques, we can now symbolise sentences 1–3 without
using any new-fangled fancy operator, such as ‘ ι’.

Sentence 1 is exactly like the examples we have just considered. So we
would symbolise it by ‘∃x(Tx ∧ ∀y(Ty → x = y) ∧ x = n)’.

Sentence 2 poses no problems either: ‘∃x(Tx ∧ ∀y(Ty → x = y) ∧ Cx)’.
Sentence 3 is a little trickier, because it links two definite descriptions.

But, deploying Russell’s analysis, it can be paraphrased by ‘there is exactly
one traitor, x, and there is exactly one deputy, y, and x = y’. So we can
symbolise it by:

∃x∃y
([
Tx ∧ ∀z(Tz → x = z)

]
∧
[
Dy ∧ ∀z(Dz → y = z)

]
∧ x = y

)
Note that I have made sure that the formula ‘x = y’ falls within the scope of
both quantifiers!

18.3 Empty definite descriptions

One of the nice features of Russell’s analysis is that it allows us to handle empty
definite descriptions neatly.

France has no king at present. Now, if we were to introduce a name, ‘k’, to
name the present King of France, then everything would go wrong: remember

1Bertrand Russell, ‘On Denoting’, 1905, Mind 14, pp. 479–93; also Russell, Introduction
to Mathematical Philosophy, 1919, London: Allen and Unwin, ch. 16.
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from §14 that a name must always pick out some object in the domain, and
whatever we choose as our domain, it will contain no present kings of France.

Russell’s analysis neatly avoids this problem. Russell tells us to treat def-
inite descriptions using predicates and quantifiers, instead of names. Since
predicates can be empty (see §15), this means that no difficulty now arises
when the definite description is empty.

Indeed, Russell’s analysis helpfully highlights two ways to go wrong in a
claim involving a definite description. To adapt an example from Stephen
Neale (1990),2 suppose I, Tim Button, claim:

4. I am dating the present king of France.

Using the following symbolisation key:

b: Tim
Kx: x is a present king of France
Dxy: x is dating y

Sentence 4 would be symbolised by ‘∃x(∀y(Ky ↔ x = y)∧Dbx)’. Now, this can
be false in (at least) two ways, corresponding to these two different sentences:

5. There is no one who is both the present King of France and such that he
and Tim are dating.

6. There is a unique present King of France, but Tim is not dating him.

Sentence 5 might be paraphrased by ‘It is not the case that: the present King of
France and Tim are dating’. It will then be symbolised by ‘¬∃x

[
Kx∧∀y(Ky →

x = y) ∧Dbx
]
’. We might call this outer negation, since the negation governs

the entire sentence. Note that it will be true if there is no present King of
France.

Sentence 6 can be symbolised by ‘∃x(Kx ∧ ∀y(Ky → x = y) ∧ ¬Dbx). We
might call this inner negation, since the negation occurs within the scope of
the definite description. Note that its truth requires that there is a present
King of France, albeit one who is not dating Tim.

18.4 The adequacy of Russell’s analysis

How good is Russell’s analysis of definite descriptions? This question has gen-
erated a substantial philosophical literature, but I shall content myself with
two observations.

One worry focusses on Russell’s treatment of empty definite descriptions.
If there are no Fs, then on Russell’s analysis, both ‘the F is G’ is and ‘the F
is non-G’ are false. P.F. Strawson suggested that such sentences should not
be regarded as false, exactly.3 Rather, they involve presupposition failure, and
need to be regarded as neither true nor false.

If we agree with Strawson here, we shall need to revise our logic. For, in
our logic, there are only two truth values (True and False), and every sentence
is assigned exactly one of these truth values.

2Neale, Descriptions, 1990, Cambridge: MIT Press.
3P.F. Strawson, ‘On Referring’, 1950, Mind 59, pp. 320–34.
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But there is room to disagree with Strawson. Strawson is appealing to some
linguistic intuitions, but it is not clear that they are very robust. For example:
isn’t it just false, not ‘gappy’, that Tim is dating the present King of France?4

Keith Donnellan raised a second sort of worry, which (very roughly) can be
brought out by thinking about a case of mistaken identity.5 Two men stand in
the corner: a very tall man drinking what looks like a gin martini; and a very
short man drinking what looks like a pint of water. Seeing them, Malika says:

7. The gin-drinker is very tall!

Russell’s analysis will have us render Malika’s sentence as:

7′. There is exactly one gin-drinker [in the corner], and whomever is a gin-
drinker [in the corner] is very tall.

But now suppose that the very tall man is actually drinking water from a
martini glass; whereas the very short man is drinking a pint of (neat) gin. By
Russell’s analysis, Malika has said something false. But don’t we want to say
that Malika has said something true?

Again, one might wonder how clear our intuitions are on this case. We can
all agree that Malika intended to pick out a particular man, and say something
true of him (that he was tall). On Russell’s analysis, she actually picked out
a different man (the short one), and consequently said something false of him.
But maybe advocates of Russell’s analysis only need to explain why Malika’s
intentions were frustrated, and so why she said something false. This is easy
enough to do: Malika said something false because she had false beliefs about
the men’s drinks; if Malika’s beliefs about the drinks had been true, then she
would have said something true.6

To say much more here would lead us into deep philosophical waters. That
would be no bad thing, but for now it would distract us from the immediate
purpose of learning formal logic. So, for now, we shall stick with Russell’s
analysis of definite descriptions, when it comes to putting things into FOL. It
is certainly the best that we can offer, without significantly revising our logic.
And it is quite defensible as an analysis.

Practice exercises

A. Using the following symbolisation key:

domain: people
Kx: x knows the combination to the safe.
Sx: x is a spy.
V x: x is a vegetarian.
Txy: x trusts y.

h: Hofthor

4This is Neale’s (1990) line.
5Keith Donnellan, ‘Reference and Definite Descriptions’, 1966, Philosophical Review 77,

pp. 281–304.
6Interested parties should read Saul Kripke, ‘Speaker Reference and Semantic Reference’,

1977, in French et al (eds.), Contemporary Perspectives in the Philosophy of Language,
Minneapolis: University of Minnesota Press, pp. 6-27.
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i: Ingmar

symbolise the following sentences in FOL:

1. Hofthor trusts a vegetarian.
2. Everyone who trusts Ingmar trusts a vegetarian.
3. Everyone who trusts Ingmar trusts someone who trusts a vegetarian.
4. Only Ingmar knows the combination to the safe.
5. Ingmar trusts Hofthor, but no one else.
6. The person who knows the combination to the safe is a vegetarian.
7. The person who knows the combination to the safe is not a spy.

B. Using the following symbolisation key:

domain: cards in a standard deck
Bx: x is black.
Cx: x is a club.
Dx: x is a deuce.
Jx: x is a jack.
Mx: x is a man with an axe.
Ox: x is one-eyed.
Wx: x is wild.

symbolise each sentence in FOL:

1. All clubs are black cards.
2. There are no wild cards.
3. There are at least two clubs.
4. There is more than one one-eyed jack.
5. There are at most two one-eyed jacks.
6. There are two black jacks.
7. There are four deuces.
8. The deuce of clubs is a black card.
9. One-eyed jacks and the man with the axe are wild.

10. If the deuce of clubs is wild, then there is exactly one wild card.
11. The man with the axe is not a jack.
12. The deuce of clubs is not the man with the axe.

C. Using the following symbolisation key:

domain: animals in the world
Bx: x is in Farmer Brown’s field.
Hx: x is a horse.
Px: x is a Pegasus.
Wx: x has wings.

symbolise the following sentences in FOL:

1. There are at least three horses in the world.
2. There are at least three animals in the world.
3. There is more than one horse in Farmer Brown’s field.
4. There are three horses in Farmer Brown’s field.
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5. There is a single winged creature in Farmer Brown’s field; any other
creatures in the field must be wingless.

6. The Pegasus is a winged horse.
7. The animal in Farmer Brown’s field is not a horse.
8. The horse in Farmer Brown’s field does not have wings.

D. In this section, I symbolised ‘Nick is the traitor’ by ‘∃x(Tx∧∀y(Ty → x =
y) ∧ x = n)’. Two equally good symbolisations would be:

• Tn ∧ ∀y(Ty → n = y)
• ∀y(Ty ↔ y = n)

Explain why these would be equally good symbolisations.
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We know how to represent English sentences in FOL. The time has finally come
to define the notion of a sentence of FOL.

19.1 Expressions

There are six kinds of symbols in FOL:

Predicates A,B,C, . . . , Z
with subscripts, as needed A1, B1, Z1, A2, A25, J375, . . .

Constants a, b, c, . . . , r
with subscripts, as needed a1, b224, h7,m32, . . .

Variables s, t, u, v, w, x, y, z
with subscripts, as needed x1, y1, z1, x2, . . .

Connectives ¬,∧,∨,→,↔

Brackets ( , )

Quantifiers ∀, ∃

We define an expression of fol as any string of symbols of FOL. Take any
of the symbols of FOL and write them down, in any order, and you have an
expression.

19.2 Terms and formulas

In §6, we went straight from the statement of the vocabulary of TFL to the
definition of a sentence of TFL. In FOL, we shall have to go via an intermediary
stage: via the notion of a formula. The intuitive idea is that a formula is any
sentence, or anything which can be turned into a sentence by adding quantifiers
out front. But this will take some unpacking.

We start by defining the notion of a term.

A term is any name or any variable.

So, here are some terms:

a, b, x, x1x2, y, y254, z
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We next need to define atomic formulas.

1. If R is an n-place predicate and t1, t2, . . . , tn are terms, then
Rt 1t2 . . . tn is an atomic formula.

2. If t1 and t2 are terms, then t1 = t2 is an atomic formula.

3. Nothing else is an atomic formula.

The use of swashfonts here follows the conventions laid down in §7. So, ‘R ’
is not itself a predicate of FOL. Rather, it is a symbol of our metalanguage
(augmented English) that we use to talk about any predicate of FOL. Similarly,
‘t1’ is not a term of FOL, but a symbol of the metalanguage that we can use
to talk about any term of FOL. So, where ‘F ’ is a one-place predicate, ‘G’ is
a three-place predicate, and ‘S’ is a six-place predicate, here are some atomic
formulas:

x = a
a = b
Fx
Fa

Gxay
Gaaa

Sx1x2abyx1

Sby254zaaz

Once we know what atomic formulas are, we can offer recursion clauses to
define arbitrary formulas. The first few clauses are exactly the same as for
TFL.

1. Every atomic formula is a formula.

2. If A is a formula, then ¬A is a formula.

3. If A and B are formulas, then (A ∧ B) is a formula.

4. If A and B are formulas, then (A ∨ B) is a formula.

5. If A and B are formulas, then (A → B) is a formula.

6. If A and B are formulas, then (A ↔ B) is a formula.

7. If A is a formula, x is a variable, A contains at least one
occurrence of x , and A contains neither ∀x nor ∃x , then ∀xA
is a formula.

8. If A is a formula, x is a variable, A contains at least one
occurrence of x , and A contains neither ∀x nor ∃x , then ∃xA
is a formula.

9. Nothing else is a formula.

So, assuming again that ‘F ’ is a one-place predicate, ‘G’ is a three-place pred-
icate and ‘H’ is a six place-predicate, here are some formulas:

Fx
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Gayz
Syzyayx

(Gayz → Syzyayx)
∀z(Gayz → Syzyayx)

Fx ↔ ∀z(Gayz → Syzyayx)
∃y(Fx ↔ ∀z(Gayz → Syzyayx))

∀x∃y(Fx ↔ ∀z(Gayz → Syzyayx))

But this is not a formula:

∀x∃xGxxx

Certainly ‘Gxxx’ is a formula. And ‘∃xGxxx’ is therefore also a formula. But
we cannot form a new formula by putting ‘∀x’ at the front. This violates the
constraints on clause 7 of our recursive definition: ‘∃xGxxx’ contains at least
one occurrence of ‘x’, but it already contains ‘∃x’.

These constraints have the effect of ensuring that variables only serve one
master at any one time (see §16). And in fact, we can now give a formal
definition of scope, which incorporates the definition of the scope of a quantifier.
Here we follow the case of TFL, though we note that a logical operator can be
either a connective or a quantifier:

The main logical operator in a formula is the operator that
was introduced last, when that formula was constructed using the
recursion rules.

The scope of a logical operator in a formula is the subformula for
which that operator is the main logical operator.

So we can graphically illustrate the scope of the quantifiers in the preceding
example thus:

scope of ‘∀x’︷ ︸︸ ︷
∀x

scope of ‘∃y’︷ ︸︸ ︷
∃y(Fx ↔

scope of ‘∀z’︷ ︸︸ ︷
∀z(Gayz → Syzyayx))

19.3 Sentences

Recall that we are largely concerned in logic with assertoric sentences: sen-
tences that can be either true or false. Many formulas are not sentences.
Consider the following symbolisation key:

domain: people
Lxy: x loves y

b: Boris

Consider the atomic formula ‘Lzz’. All atomic formula are formulas, so ‘Lzz’
is a formula. But can it be true or false? You might think that it will be true
just in case the person named by ‘z’ loves herself, in the same way that ‘Lbb’
is true just in case Boris (the person named by ‘b’) loves himself. But ‘z’ is a
variable, and does not name anyone or any thing.
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Of course, if we put an existential quantifier out front, obtaining ‘∃zLzz’,
then this would be true iff someone loves herself. Equally, if we wrote ‘∀zLzz’,
this would be true iff everyone loves herself. The point is that we need a
quantifier to tell us how to deal with a variable.

Let’s make this idea precise.

A bound variable is an occurrence of a variable x that is within
the scope of either ∀x or ∃x .

A free variable is any variable that is not bound.

For example, consider the formula

∀x(Ex ∨Dy) → ∃z(Ex → Lzx)

The scope of the universal quantifier ‘∀x’ is ‘∀x(Ex ∨ Dy)’, so the first ‘x’ is
bound by the universal quantifier. However, the second and third occurrence
of ‘x’ are free. Equally, the ‘y’ is free. The scope of the existential quantifier
‘∃z’ is ‘(Ex → Lzx)’, so ‘z’ is bound.

Finally we can say the following.

A sentence of FOL is any formula of FOL that contains no free
variables.

19.4 Bracketing conventions

We will adopt the same notational conventions governing brackets that we did
for TFL (see §6 and §10.3.)

First, we may omit the outermost brackets of a formula.
Second, we may use square brackets, ‘[’ and ‘]’, in place of brackets to

increase the readability of formulas.
Third, we may omit brackets between each pair of conjuncts when writing

long series of conjunctions.
Fourth, we may omit brackets between each pair of disjuncts when writing

long series of disjunctions.

Practice exercises

A. Identify which variables are bound and which are free.

1. ∃xLxy ∧ ∀yLyx
2. ∀xAx ∧Bx
3. ∀x(Ax ∧Bx) ∧ ∀y(Cx ∧Dy)
4. ∀x∃y[Rxy → (Jz ∧Kx)] ∨Ryx
5. ∀x1(Mx2 ↔ Lx2x1) ∧ ∃x2Lx3x2
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Extensionality 20

Recall that TFL is a truth-functional language. Its connectives are all truth-
functional, and all that we can do with TFL is key sentences to particular
truth values. We can do this directly. For example, we might stipulate that
the TFL sentence ‘P ’ is to be true. Alternatively, we can do this indirectly,
offering a symbolisation key, e.g.:

P : Big Ben is in London

But recall from §9 that this should be taken to mean:

• The TFL sentence ‘P ’ is to take the same truth value as the English
sentence ‘Big Ben is in London’ (whatever that truth value may be)

The point that I emphasised is that TFL cannot handle differences in meaning
that go beyond mere differences in truth value.

20.1 Symbolising versus translating

FOL has some similar limitations. It gets beyond mere truth values, since it
enables us to split up sentences into terms, predicates and quantifier expres-
sions. This enables us to consider what is true of some particular object, or of
some or all objects. But we can do no more than that.

When we provide a symbolisation key for some FOL predicates, such as:

Cx: x lectures logic in Cambridge in Michaelmas 2014

we do not carry the meaning of the English predicate across into our FOL
predicate. We are simply stipulating something like the following:

• ‘Cx’ and ‘ x lectures logic in Cambridge in Michaelmas 2014’ are to
be true of exactly the same things.

So, in particular:

• ‘Cx’ is to be true of all and only those things which lecture logic in
Cambridge in Michaelmas 2014 (whatever those things might be).

This is an indirect stipulation. Alternatively we can stipulate predicate exten-
sions directly. We can stipulate that ‘Cx’ is to be true of Tim Button, and
Tim Button alone. As it happens, this direct stipulation would have the same
effect as the indirect stipulation. But note that the English predicates ‘
is Tim Button’ and ‘ lectures logic in Cambridge in Michaelmas 2014’
have very different meanings!
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The point is that FOL does not give us any resources for dealing with
nuances of meaning. When we interpret FOL, all we are considering is what
the predicates are true of. This is normally summed up by saying that FOL is
an extensional language.

For this reason, I say only that FOL sentences symbolise English sentences.
It is doubtful that we are translating English into FOL, for translations should
preserve meanings.

20.2 A word on extensions

We can stipulate directly what predicates are to be true of. So it is worth
noting that our stipulations can be as arbitrary as we like. For example, we
could stipulate that ‘Hx’ should be true of, and only of, the following objects:

David Cameron
the number π

every top-F key on every piano ever made

Now, the objects that we have listed have nothing particularly in common. But
this doesn’t matter. Logic doesn’t care about what strikes us mere humans as
‘natural’ or ‘similar’. Armed with this interpretation of ‘Hx’, suppose I now
add to my symbolisation key:

d: David Cameron
n: Nick Clegg
p: the number π

Then ‘Hd’ and ‘Hp’ will both be true, on this interpretation, but ‘Hn’ will be
false, since Nick Clegg was not among the stipulated objects.

(This process of explicit stipulation is sometimes described as stipulating
the extension of a predicate.)

20.3 Many-place predicates

All of this is quite easy to understand when it comes to one-place predicates.
But it gets much messier when we consider two-place predicates. Consider a
symbolisation key like:

Lxy: x loves y

Given what I said above, this symbolisation key should be read as saying:

• ‘Lxy’ and ‘ x loves y’ are to be true of exactly the same things

So, in particular:

• ‘Lxy’ is to be true of x and y (in that order) iff x loves y.

It is important that we insist upon the order here, since love—famously—is
not always reciprocated. (Note that ‘x’ and ‘y’ here are symbols of augmented
English, and that they are being used. By contrast, ‘x’ and ‘y’ are symbols of
FOL, and they are being mentioned.)
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That is an indirect stipulation. What about a direct stipulation? This is
slightly harder. If we simply list objects that fall under ‘Lxy’, we will not know
whether they are the lover or the beloved (or both). We have to find a way to
include the order in our explicit stipulation.

To do this, we can specify that two-place predicates are true of pairs of
objects, where the order of the pair is important. Thus we might stipulate
that ‘Bxy’ is to be true of, and only of, the following pairs of objects:

<Lenin, Marx>
<Heidegger, Sartre>
<Sartre, Heidegger>

Here the angle-brackets keep us informed concerning order. Suppose I now add
the following stipulations:

l: Lenin
m: Marx
h: Heidegger
s: Sartre

Then ‘Blm’ will be true, since <Lenin, Marx> was in my explicit list. But
‘Bml’ will be false, since <Marx, Lenin> was not in my list. However,
both ‘Bhs’ and ‘Bsh’ will be true, since both <Heidegger, Sartre> and
<Sartre, Heidegger> are in my explicit list

To make these ideas more precise, we would need to develop some set theory.
This will give you some apparatus for dealing with extensions and with ordered
pairs (and ordered triples, etc.) However, set theory is not covered in this book.
So I shall leave these ideas at an imprecise level. I hope that the general idea
is clear enough.

20.4 Semantics for identity

Identity is a special predicate of FOL. We write it a bit differently than other
two-place predicates: ‘x = y’ instead of ‘Ixy’ (for example). More important,
though, its interpretation is fixed, once and for all.

If two names refer to the same object, then swapping one name for another
will not change the truth value of any sentence. So, in particular, if ‘a’ and ‘b’
name the same object, then all of the following will be true:

Aa ↔ Ab

Ba ↔ Bb

Raa ↔ Rbb

Raa ↔ Rab

Rca ↔ Rcb

∀xRxa ↔ ∀xRxb

Some philosophers have believed the reverse of this claim. That is, they have
believed that when exactly the same sentences (not containing ‘=’) are true of
two objects, then they are really just one and the same object after all. This
is a highly controversial philosophical claim (sometimes called the identity of
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indiscernibles) and our logic will not subscribe to it. So we allow that exactly
the same things might be true of two distinct objects.

To bring this out, consider the following interpretation:

domain: P.D. Magnus, Tim Button
a: P.D. Magnus
b: Tim Button
• For every primitive predicate we care to consider, that predicate is true

of nothing.

Suppose ‘A’ is a one-place predicate; then ‘Aa’ is false and ‘Ab’ is false, so
‘Aa ↔ Ab’ is true. Similarly, if ‘R’ is a two-place predicate, then ‘Raa’ is false
and ‘Rab’ is false, so that ‘Raa ↔ Rab’ is true. And so it goes: every atomic
sentence not involving ‘=’ is false, so every biconditional linking such sentences
is true. For all that, Tim Button and P.D. Magnus are two distinct people, not
one and the same!

20.5 Interpretation

I defined a valuation in TFL as any assignment of truth and falsity to atomic
sentences. In FOL, I am going to define an interpretation as consisting of
three things:

• the specification of a domain
• for each name that we care to consider, an assignment of exactly one

object within the domain
• for each predicate that we care to consider—other than ‘=’—a specifica-

tion of what things (in what order) the predicate is to be true of

The symbolisation keys that I considered in chapter 4 consequently give us
one very convenient way to present an interpretation. We shall continue to
use them throughout this chapter. However, it is sometimes also convenient to
present an interpretation diagrammatically.

Suppose we want to consider just a single two-place predicate, ‘Rxy’. Then
we can represent it just by drawing an arrow between two objects, and stipulate
that ‘Rxy’ is to hold of x and y just in case there is an arrow running from x
to y in our diagram. As an example, we might offer:

..

1

.

2

. 3.4

This would be suitable to characterise an interpretation whose domain is the
first four positive whole numbers, and which interprets ‘Rxy’ as being true of
and only of:

<1, 2>, <2, 3>, <3, 4>, <4, 1>, <1, 3>

Equally we might offer:
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..

1

.

2

. 3.4

for an interpretation with the same domain, which interprets ‘Rxy’ as being
true of and only of:

<1, 3>, <3, 1>, <3, 4>, <1, 1>, <3, 3>

If we wanted, we could make our diagrams more complex. For example, we
could add names as labels for particular objects. Equally, to symbolise the
extension of a one-place predicate, we might simply draw a ring around some
particular objects and stipulate that the thus encircled objects (and only them)
are to fall under the predicate ‘Hx’, say.
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We know what interpretations are. Since, among other things, they tell us
which predicates are true of which objects, they will provide us with an account
of the truth of atomic sentences. But we must also present a detailed account of
what it is for an arbitrary FOL sentence to be true or false in an interpretation.

We know from §19 that there are three kinds of sentence in FOL:

• atomic sentences
• sentences whose main logical operator is a sentential connective
• sentences whose main logical operator is a quantifier

We need to explain truth for all three kinds of sentence.
I shall offer a completely general explanation in this section. However, to

try to keep the explanation comprehensible, I shall at several points use the
following interpretation:

domain: all people born before 2000ce
a: Aristotle
b: Bush

Wx: x is wise
Rxy: x was born before y

This will be my go-to example in what follows.

21.1 Atomic sentences

The truth of atomic sentences should be fairly straightforward. The sentence
‘Wa’ should be true just in case ‘Wx’ is true of ‘a’. Given our go-to interpre-
tation, this is true iff Aristotle is wise. Aristotle is wise. So the sentence is
true. Equally, ‘Wb’ is false on our go-to interpretation.

Likewise, on this interpretation, ‘Rab’ is true iff the object named by ‘a’ was
born before the object named by ‘b’. Well, Aristotle was born before Bush. So
‘Rab’ is true. Equally, ‘Raa’ is false: Aristotle was not born before Aristotle.

Dealing with atomic sentences, then, is very intuitive. When R is an n-
place predicate and a1, a2, . . . , an are names,

Ra1a2 . . . an is true in an interpretation iff
R is true of the objects named by a1, a2, . . . , an in that interpreta-
tion (considered in that order)
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Recall, though, that there is a second kind of atomic sentence, recall: two
names connected by an identity sign constitute an atomic sentence. This kind
of atomic sentence is also easy to handle. Where a and b are any names,

a = b is true in an interpretation iff
a and b name the very same object in that interpretation

So in our go-to interpretation, ‘a = b’ is false, since Aristotle is distinct from
Bush.

21.2 Sentential connectives

We saw in §19 that FOL sentences can be built up from simpler ones using the
truth-functional connectives that were familiar from TFL. The rules governing
these truth-functional connectives are exactly the same as they were when we
considered TFL. Here they are:

A ∧ B is true in an interpretation iff
both A is true and B is true in that interpretation

A ∨ B is true in an interpretation iff
either A is true or B is true in that interpretation

¬A is true in an interpretation iff
A is false in that interpretation

A → B is true in an interpretation iff
either A is false or B is true in that interpretation

A ↔ B is true in an interpretation iff
A has the same truth value as B in that interpretation

This presents the very same information as the characteristic truth tables for
the connectives; it just does it in a slightly different way. Some examples will
probably help to illustrate the idea. On our go-to interpretation:

• ‘a = a ∧Wa’ is true
• ‘Rab ∧Wb’ is false because, although ‘Rab’ is true, ‘Wb’ is false
• ‘a = b ∨Wa’ is true
• ‘¬a = b’ is true
• ‘Wa ∧ ¬(a = b ∧Rab)’ is true, because ‘Wa’ is true and ‘a = b’ is false

Make sure you understand these examples.

21.3 When the main logical operator is a quantifier

The exciting innovation in FOL, though, is the use of quantifiers. And in fact,
expressing the truth conditions for quantified sentences is a bit more fiddly
than one might expect.
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Here is a näıve first thought. We want to say that ‘∀xFx’ is true iff ‘Fx’
is true of everything in the domain. This should not be too problematic: our
interpretation will specify directly what ‘Fx’ is true of.

Unfortunately, this näıve first thought is not general enough. For example,
we want to be able to say that ‘∀x∃yLxy’ is true just in case ‘∃yLxy’ is true
of everything in the domain. And this is problematic, since our interpretation
does not directly specify what ‘∃yLxy’ is to be true of. Instead, whether or not
this is true of something should follow just from the interpretation of ‘Lxy’,
the domain, and the meanings of the quantifiers.

So here is a näıve second thought. We might try to say that ‘∀x∃yLxy’ is
to be true in an interpretation iff ∃yLay is true for every name a that we have
included in our interpretation. And similarly, we might try to say that ∃yLay
is true just in case Lab is true for some name b that we have included in our
interpretation.

Unfortunately, this is not right either. To see this, observe that in our go-to
interpretation, we have only given interpretations for two names, ‘a’ and ‘b’.
But the domain—all people born before the year 2000ce—contains many more
than two people. I have no intention of trying to name all of them!

So here is a third thought. (And this thought is not näıve, but correct.)
Although it is not the case that we have named everyone, each person could
have been given a name. So we should focus on this possibility of extending
an interpretation, by adding a new name. I shall offer a few examples of how
this might work, centring on our go-to interpretation, and I shall then present
the formal definition.

In our go-to interpretation, ‘∃xRbx’ should be true. After all, in the domain,
there is certainly someone who was born after Bush. Lady Gaga is one of those
people. Indeed, if we were to extend our go-to interpretation—temporarily,
mind—by adding the name ‘c’ to refer to Lady Gaga, then ‘Rbc’ would be
true on this extended interpretation. And this, surely, should suffice to make
‘∃xRbx’ true on the original go-to interpretation.

In our go-to interpretation, ‘∃x(Wx ∧Rxa)’ should also be true. After all,
in the domain, there is certainly someone who was both wise and born before
Aristotle. Socrates is one such person. Indeed, if we were to extend our go-to
interpretation by letting a new name, ‘c’, denote Socrates, then ‘Wc ∧ Rca’
would be true on this extended interpretation. Again, this should surely suffice
to make ‘∃x(Wx ∧Rxa)’ true on the original go-to interpretation.

In our go-to interpretation, ‘∀x∃yRxy’ should be false. After all, consider
the last person born in the year 1999. I don’t know who that was, but if we
were to extend our go-to interpretation by letting a new name, ‘d’, denote that
person, then we would not be able to find anyone else in the domain to denote
with some further new name, perhaps ‘e’, in such a way that ‘Rde’ would
be true. Indeed, no matter whom we named with ‘e’, ‘Rde’ would be false.
And this observation is surely sufficient to make ‘∃yRdy’ false in our extended
interpretation. And this is surely sufficient to make ‘∀x∃yRxy’ false on the
original go-to interpretation.

If you have understood these three examples, then that’s what matters.
Strictly speaking, though, we still need to give a precise definition of the truth
conditions for quantified sentences. The result, sadly, is a bit ugly, and requires
a few new definitions. Brace yourself!
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Suppose that A is a formula containing at least one instance of the variable
x , and that x is free in A . We will write this thus:

A(. . . x . . . x . . .)

Suppose also that c is a name. Then we shall write:

A(. . . c . . . c . . .)

for the formula obtained by replacing every occurrence of x in A with c. The
resulting formula is called a substitution instance of ∀xA and ∃xA . c is
called the instantiating name. So:

∃x(Rex ↔ Fx)

is a substitution instance of

∀y∃x(Ryx ↔ Fx)

with the instantiating name ‘e’.
Armed with this notation, the rough idea is as follows. The sentence

∀xA(. . . x . . . x . . .) will be true iff A(. . . c . . . c . . .) is true no matter what ob-
ject (in the domain) we name with c. Similarly, the sentence ∃xA will be true iff
there is some way to assign the name c to an object that makes A(. . . c . . . c . . .)
true. More precisely, we stipulate:

∀xA(. . . x . . . x . . .) is true in an interpretation iff
A(. . . c . . . c . . .) is true in every interpretation that extends the orig-
inal interpretation by assigning an object to any name c (without
changing the interpretation in any other way).

∃xA(. . . x . . . x . . .) is true in an interpretation iff
A(. . . c . . . c . . .) is true in some interpretation that extends the orig-
inal interpretation by assigning an object to some name c (without
changing the interpretation in any other way).

To be clear: all this is doing is formalising (very pedantically) the intuitive idea
expressed on the previous page. The result is a bit ugly, and the final definition
might look a bit opaque. Hopefully, though, the spirit of the idea is clear.

Practice exercises

A. Consider the following interpretation:

• The domain comprises only Corwin and Benedict
• ‘Ax’ is to be true of both Corwin and Benedict
• ‘Bx’ is to be true of Benedict only
• ‘Nx’ is to be true of no one
• ‘c’ is to refer to Corwin

Determine whether each of the following sentences is true or false in that in-
terpretation:
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1. Bc
2. Ac ↔ ¬Nc
3. Nc → (Ac ∨Bc)
4. ∀xAx
5. ∀x¬Bx
6. ∃x(Ax ∧Bx)
7. ∃x(Ax → Nx)
8. ∀x(Nx ∨ ¬Nx)
9. ∃xBx → ∀xAx

B. Consider the following interpretation:

• The domain comprises only Lemmy, Courtney and Eddy
• ‘Gx’ is to be true of Lemmy, Courtney and Eddy.
• ‘Hx’ is to be true of and only of Courtney
• ‘Mx’ is to be true of and only of Lemmy and Eddy
• ‘c’ is to refer to Courtney
• ‘e’ is to refer to Eddy

Determine whether each of the following sentences is true or false in that in-
terpretation:

1. Hc
2. He
3. Mc ∨Me
4. Gc ∨ ¬Gc
5. Mc → Gc
6. ∃xHx
7. ∀xHx
8. ∃x¬Mx
9. ∃x(Hx ∧Gx)

10. ∃x(Mx ∧Gx)
11. ∀x(Hx ∨Mx)
12. ∃xHx ∧ ∃xMx
13. ∀x(Hx ↔ ¬Mx)
14. ∃xGx ∧ ∃x¬Gx
15. ∀x∃y(Gx ∧Hy)

C. Following the diagram conventions introduced at the end of §20, consider
the following interpretation:

..

1

.

2

.3. 4. 5

Determine whether each of the following sentences is true or false in that in-
terpretation:

1. ∃xRxx
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2. ∀xRxx
3. ∃x∀yRxy
4. ∃x∀yRyx
5. ∀x∀y∀z((Rxy ∧Ryz) → Rxz)
6. ∀x∀y∀z((Rxy ∧Rxz) → Ryz)
7. ∃x∀y¬Rxy
8. ∀x(∃yRxy → ∃yRyx)
9. ∃x∃y(¬x = y ∧Rxy ∧Ryx)

10. ∃x∀y(Rxy ↔ x = y)
11. ∃x∀y(Ryx ↔ x = y)
12. ∃x∃y(¬x = y ∧Rxy ∧ ∀z(Rzx ↔ y = z))
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Offering a precise definition of truth in FOL was more than a little fiddly. But
now that we are done, we can define various central logical notions. These will
look very similar to the definitions we offered for TFL. However, remember
that they concern interpretations, rather than valuations.

We will use the symbol ‘⊨’ for FOL much as we did for TFL. So:

A1,A2, . . . ,An ⊨ C

means that there is no interpretation in which all of A1,A2, . . . ,An are true
and in which C is false. Derivatively,

⊨ A

means that A is true in every interpretation.

An FOL sentence A is a logical truth iff A is true in every interpretation;
i.e., ⊨ A .

A is a contradiction iff A is false in every interpretation; i.e., ⊨ ¬A .

A1,A2, . . .An .˙. C is valid in fol iff there is no interpretation in which all of
the premises are true and the conclusion is false; i.e., A1,A2, . . .An ⊨ C . It is
invalid in fol otherwise.

Two FOL sentences A and B are logically equivalent iff they are true in
exactly the same interpretations as each other; i.e., both A ⊨ B and B ⊨ A .

The FOL sentences A1,A2, . . . ,An are jointly consistent iff there is some
interpretation in which all of the sentences are true. They are jointly incon-
sistent iff there is no such interpretation.
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23.1 Logical truths and contradictions

Suppose we want to show that ‘∃xAxx → Bd’ is not a logical truth. This
requires showing that the sentence is not true in every interpretation; i.e., that
it is false in some interpretation. If we can provide just one interpretation in
which the sentence is false, then we will have shown that the sentence is not a
logical truth.

In order for ‘∃xAxx → Bd’ to be false, the antecedent (‘∃xAxx’) must be
true, and the consequent (‘Bd’) must be false. To construct such an interpre-
tation, we start by specifying a domain. Keeping the domain small makes it
easier to specify what the predicates will be true of, so we shall start with a
domain that has just one member. For concreteness, let’s say it is the city of
Paris.

domain: Paris

The name ‘d’ must name something in the domain, so we have no option but:

d: Paris

Recall that we want ‘∃xAxx’ to be true, so we want all members of the domain
to be paired with themselves in the extension of ‘A’. We can just offer:

Axy: x is identical with y

Now ‘Add’ is true, so it is surely true that ‘∃xAxx’. Next, we want ‘Bd’ to
be false, so the referent of ‘d’ must not be in the extension of ‘B’. We might
simply offer:

Bx: x is in Germany

Now we have an interpretation where ‘∃xAxx’ is true, but where ‘Bd’ is false.
So there is an interpretation where ‘∃xAxx → Bd’ is false. So ‘∃xAxx → Bd’
is not a logical truth.

We can just as easily show that ‘∃xAxx → Bd’ is not a contradiction. We
need only specify an interpretation in which ‘∃xAxx → Bd’ is true; i.e., an
interpretation in which either ‘∃xAxx’ is false or ‘Bd’ is true. Here is one:

domain: Paris
d: Paris

Axy: x is identical with y

Bx: x is in France
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This shows that there is an interpretation where ‘∃xAxx → Bd’ is true. So
‘∃xAxx → Bd’ is not a contradiction.

23.2 Logical equivalence

Suppose we want to show that ‘∀xSx’ and ‘∃xSx’ are not logically equivalent.
We need to construct an interpretation in which the two sentences have different
truth values; we want one of them to be true and the other to be false. We
start by specifying a domain. Again, we make the domain small so that we
can specify extensions easily. In this case, we shall need at least two objects.
(If we chose a domain with only one member, the two sentences would end up
with the same truth value. In order to see why, try constructing some partial
interpretations with one-member domains.) For concreteness, let’s take:

domain: Ornette Coleman, Miles Davis

We can make ‘∃xSx’ true by including something in the extension of ‘S’, and
we can make ‘∀xSx’ false by leaving something out of the extension of ‘S’. For
concreteness we shall offer:

Sx: x plays saxophone

Now ‘∃xSx’ is true, because ‘Sx’ is true of Ornette Coleman. Slightly more
precisely, extend our interpretation by allowing ‘c’ to name Ornette Coleman.
‘Sc’ is true in this extended interpretation, so ‘∃xSx’ was true in the original
interpretation. Similarly, ‘∀xSx’ is false, because ‘Sx’ is false of Miles Davis.
Slightly more precisely, extend our interpretation by allowing ‘d’ to name Miles
Davis, and ‘Sd’ is false in this extended interpretation, so ‘∀xSx’ was false in
the original interpretation. We have provided a counter-interpretation to the
claim that ‘∀xSx’ and ‘∃xSx’ are logically equivalent.

To show that A is not a logical truth, it suffices to find an inter-
pretation where A is false.
To show that A is not a contradiction, it suffices to find an inter-
pretation where A is true.
To show that A and B are not logically equivalent, it suffices to
find an interpretation where one is true and the other is false.

23.3 Validity, entailment and consistency

To test for validity, entailment, or consistency, we typically need to produce
interpretations that determine the truth value of several sentences simultane-
ously.

Consider the following argument in FOL:

∃x(Gx → Ga) .˙. ∃xGx → Ga

To show that this is invalid, we must make the premise true and the conclusion
false. The conclusion is a conditional, so to make it false, the antecedent must
be true and the consequent must be false. Clearly, our domain must contain
two objects. Let’s try:
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domain: Karl Marx, Ludwig von Mises
Gx: x hated communism
a: Karl Marx

Given that Marx wrote The Communist Manifesto, ‘Ga’ is plainly false in this
interpretation. But von Mises famously hated communism. So ‘∃xGx’ is true
in this interpretation. Hence ‘∃xGx → Ga’ is false, as required.

But does this interpretation make the premise true? Yes it does! Note
that ‘Ga → Ga’ is true. (Indeed, it is a logical truth.) But then certainly
‘∃x(Gx → Ga)’ is true. So the premise is true, and the conclusion is false, in
this interpretation. The argument is therefore invalid.

In passing, note that we have also shown that ‘∃x(Gx → Ga)’ does not
entail ‘∃xGx → Ga’. And equally, we have shown that the sentences ‘∃x(Gx →
Ga)’ and ‘¬(∃xGx → Ga)’ are jointly consistent.

Let’s consider a second example. Consider:

∀x∃yLxy .˙. ∃y∀xLxy

Again, I want to show that this is invalid. To do this, we must make the
premises true and the conclusion false. Here is a suggestion:

domain: UK citizens currently in a civil partnership with another UK citizen
Lxy: x is in a civil partnership with y

The premise is clearly true on this interpretation. Anyone in the domain is a
UK citizen in a civil partnership with some other UK citizen. That other citizen
will also, then, be in the domain. So for everyone in the domain, there will be
someone (else) in the domain with whom they are in a civil partnership. Hence
‘∀x∃yLxy’ is true. But the conclusion is clearly false, for that would require
that there is some single person who is in a civil partnership with everyone
in the domain, and there is no such person. So the argument is invalid. We
observe immediately that the sentences ‘∀x∃yLxy’ and ‘¬∃y∀xLxy’ are jointly
consistent and that ‘∀x∃yLxy’ does not entail ‘∃y∀xLxy’.

For my third example, I shall mix things up a bit. In §20, I described how
we can present some interpretations using diagrams. For example:

..

1

.

2

. 3

Using the conventions employed in §20, the domain of this interpretation is the
first three positive whole numbers, and ‘Rxy’ is true of x and y just in case
there is an arrow from x to y in our diagram. Here are some sentences that
the interpretation makes true:

• ‘∀x∃yRyx’
• ‘∃x∀yRxy’ witness 1
• ‘∃x∀y(Ryx ↔ x = y)’ witness 1
• ‘∃x∃y∃z(¬y = z ∧Rxy ∧Rzx)’ witness 2
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• ‘∃x∀y¬Rxy’ witness 3
• ‘∃x(∃yRyx ∧ ¬∃yRxy)’ witness 3

This immediately shows that all of the preceding six sentences are jointly con-
sistent. We can use this observation to generate invalid arguments, e.g.:

∀x∃yRyx, ∃x∀yRxy .˙. ∀x∃yRxy

∃x∀yRxy,∃x∀y¬Rxy .˙. ¬∃x∃y∃z(¬y = z ∧Rxy ∧Rzx)

and many more besides.

To show that A1,A2, . . . ,An .˙. C is invalid, it suffices to find an
interpretation where all of A1,A2, . . . ,An are true and where C is
false.
That same interpretation will show that A1,A2, . . . ,An do not en-
tail C .
That same interpretation will show that A1,A2, . . . ,An,¬C are
jointly consistent.

When you provide an interpretation to refute a claim—to logical truth, say, or
to entailment—this is sometimes called providing a counter-interpretation (or
providing a counter-model).

Practice exercises

A. Show that each of the following is neither a logical truth nor a contradiction:

1. Da ∧Db
2. ∃xTxh
3. Pm ∧ ¬∀xPx
4. ∀zJz ↔ ∃yJy
5. ∀x(Wxmn ∨ ∃yLxy)
6. ∃x(Gx → ∀yMy)
7. ∃x(x = h ∧ x = i)

B. Show that the following pairs of sentences are not logically equivalent.

1. Ja, Ka
2. ∃xJx, Jm
3. ∀xRxx, ∃xRxx
4. ∃xPx → Qc, ∃x(Px → Qc)
5. ∀x(Px → ¬Qx), ∃x(Px ∧ ¬Qx)
6. ∃x(Px ∧Qx), ∃x(Px → Qx)
7. ∀x(Px → Qx), ∀x(Px ∧Qx)
8. ∀x∃yRxy, ∃x∀yRxy
9. ∀x∃yRxy, ∀x∃yRyx

C. Show that the following sentences are jointly consistent:

1. Ma,¬Na,Pa,¬Qa
2. Lee, Leg,¬Lge,¬Lgg
3. ¬(Ma ∧ ∃xAx),Ma ∨ Fa, ∀x(Fx → Ax)
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4. Ma ∨Mb,Ma → ∀x¬Mx
5. ∀yGy, ∀x(Gx → Hx), ∃y¬Iy
6. ∃x(Bx ∨Ax), ∀x¬Cx, ∀x

[
(Ax ∧Bx) → Cx

]
7. ∃xXx, ∃xY x, ∀x(Xx ↔ ¬Y x)
8. ∀x(Px ∨Qx), ∃x¬(Qx ∧ Px)
9. ∃z(Nz ∧Ozz),∀x∀y(Oxy → Oyx)

10. ¬∃x∀yRxy,∀x∃yRxy
11. ¬Raa, ∀x(x = a ∨Rxa)
12. ∀x∀y∀z(x = y ∨ y = z ∨ x = z), ∃x∃y ¬x = y
13. ∃x∃y(Zx ∧ Zy ∧ x = y), ¬Zd, d = e

D. Show that the following arguments are invalid:

1. ∀x(Ax → Bx) .˙. ∃xBx
2. ∀x(Rx → Dx), ∀x(Rx → Fx) .˙. ∃x(Dx ∧ Fx)
3. ∃x(Px → Qx) .˙. ∃xPx
4. Na ∧Nb ∧Nc .˙. ∀xNx
5. Rde, ∃xRxd .˙. Red
6. ∃x(Ex ∧ Fx), ∃xFx → ∃xGx .˙. ∃x(Ex ∧Gx)
7. ∀xOxc, ∀xOcx .˙. ∀xOxx
8. ∃x(Jx ∧Kx), ∃x¬Kx, ∃x¬Jx .˙. ∃x(¬Jx ∧ ¬Kx)
9. Lab → ∀xLxb,∃xLxb .˙. Lbb

10. ∀x(Dx → ∃yTyx) .˙. ∃y∃z ¬y = z
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interpretations

24.1 Logical truths and contradictions

We can show that a sentence is not a logical truth just by providing one care-
fully specified interpretation: an interpretation in which the sentence is false.
To show that something is a logical truth, on the other hand, it would not be
enough to construct ten, one hundred, or even a thousand interpretations in
which the sentence is true. A sentence is only a logical truth if it is true in
every interpretation, and there are infinitely many interpretations. We need
to reason about all of them, and we cannot do this by dealing with them one
by one!

Sometimes, we can reason about all interpretations fairly easily. For exam-
ple, we can offer a relatively simple argument that ‘Raa ↔ Raa’ is a logical
truth:

Any relevant interpretation will give ‘Raa’ a truth value. If ‘Raa’
is true in an interpretation, then ‘Raa ↔ Raa’ is true in that inter-
pretation. If ‘Raa’ is false in an interpretation, then ‘Raa ↔ Raa’
is true in that interpretation. These are the only alternatives. So
‘Raa ↔ Raa’ is true in every interpretation. Therefore, it is a
logical truth.

This argument is valid, of course, and its conclusion is true. However, it is not
an argument in FOL. Rather, it is an argument in English about FOL: it is an
argument in the metalanguage.

Note another feature of the argument. Since the sentence in question con-
tained no quantifiers, we did not need to think about how to interpret ‘a’ and
‘R’; the point was just that, however we interpreted them, ‘Raa’ would have
some truth value or other. (We could ultimately have given the same argument
concerning TFL sentences.)

Here is another bit of reasoning. Consider the sentence ‘∀x(Rxx ↔ Rxx)’.
Again, it should obviously be a logical truth. But to say precisely why is quite
a challenge. We cannot say that ‘Rxx ↔ Rxx’ is true in every interpretation,
since ‘Rxx ↔ Rxx’ is not even a sentence of FOL (remember that ‘x’ is a
variable, not a name). So we have to be a bit cleverer.

Consider some arbitrary interpretation. Consider some arbitrary
member of the model’s domain, which, for convenience, we shall
call obbie, and suppose we extend our original interpretation by
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adding a new name, ‘c’, to name obbie. Then either ‘Rcc’ will be
true or it will be false. If ‘Rcc’ is true, then ‘Rcc ↔ Rcc’ is true.
If ‘Rcc’ is false, then ‘Rcc ↔ Rcc’ will be true. So either way,
‘Rcc ↔ Rcc’ is true. Since there was nothing special about obbie—
we might have chosen any object—we see that no matter how we
extend our original interpretation by allowing ‘c’ to name some
new object, ‘Rcc ↔ Rcc’ will be true in the new interpretation. So
‘∀x(Rxx ↔ Rxx)’ was true in the original interpretation. But we
chose our interpretation arbitrarily. So ‘∀x(Rxx ↔ Rxx)’ is true in
every interpretation. It is therefore a logical truth.

This is quite longwinded, but, as things stand, there is no alternative. In
order to show that a sentence is a logical truth, we must reason about all
interpretations.

24.2 Other cases

Similar points hold of other cases too. Thus, we must reason about all inter-
pretations if we want to show:

• that a sentence is a contradiction; for this requires that it is false in every
interpretation.

• that two sentences are logically equivalent; for this requires that they
have the same truth value in every interpretation.

• that some sentences are jointly inconsistent; for this requires that there
is no interpretation in which all of those sentences are true together; i.e.
that, in every interpretation, at least one of those sentences is false.

• that an argument is valid; for this requires that the conclusion is true in
every interpretation where the premises are true.

• that some sentences entail another sentence.

The problem is that, with the tools available to you so far, reasoning about all
interpretations is a serious challenge! Let’s take just one more example. Here
is an argument which is obviously valid:

∀x(Hx ∧ Jx) .˙. ∀xHx

After all, if everything is both H and J, then everything is H. But we can only
show that the argument is valid by considering what must be true in every
interpretation in which the premise is true. And to show this, we would have
to reason as follows:

Consider an arbitrary interpretation in which the premise ‘∀x(Hx∧
Jx)’ is true. It follows that, however we expand the interpretation
with a new name, for example ‘c’, ‘Hc ∧ Jc’ will be true in this
new interpretation. ‘Hc’ will, then, also be true in this new in-
terpretation. But since this held for any way of expanding the
interpretation, it must be that ‘∀xHx’ is true in the old interpreta-
tion. And we assumed nothing about the interpretation except that
it was one in which ‘∀x(Hx ∧ Jx)’ is true. So any interpretation
in which ‘∀x(Hx∧ Jx)’ is true is one in which ‘∀xHx’ is true. The
argument is valid!
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Even for a simple argument like this one, the reasoning is somewhat compli-
cated. For longer arguments, the reasoning can be extremely torturous.

The following table summarises whether a single (counter-)interpretation
suffices, or whether we must reason about all interpretations.

Yes No
logical truth? all interpretations one counter-interpretation
contradiction? all interpretations one counter-interpretation
equivalent? all interpretations one counter-interpretation
consistent? one interpretation consider all interpretations
valid? all interpretations one counter-interpretation
entailment? all interpretations one counter-interpretation

This might usefully be compared with the table at the end of §13. The key
difference resides in the fact that TFL concerns truth tables, whereas FOL
concerns interpretations. This difference is deeply important, since each truth-
table only ever has finitely many lines, so that a complete truth table is a
relatively tractable object. By contrast, there are infinitely many interpreta-
tions for any given sentence(s), so that reasoning about all interpretations can
be a deeply tricky business.



Chapter 6

Natural deduction for TFL
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The very idea of natural 25
deduction

Way back in §2, we said that an argument is valid iff it is impossible to make
all of the premises true and the conclusion false.

In the case of TFL, this led us to develop truth tables. Each line of a
complete truth table corresponds to a valuation. So, when faced with a TFL
argument, we have a very direct way to assess whether it is possible to make
all of the premises true and the conclusion false: just thrash through the truth
table.

But truth tables do not necessarily give us much insight. Consider two
arguments in TFL:

P ∨Q,¬P .˙. Q

P → Q,P .˙. Q

Clearly, these are valid arguments. You can confirm that they are valid by
constructing four-line truth tables. But we might say that they make use
of different forms of reasoning. And it might be nice to keep track of these
different forms of inference.

One aim of a natural deduction system is to show that particular arguments
are valid, in a way that allows us to understand the reasoning that the argu-
ments might involve. We begin with very basic rules of inference. These rules
can be combined, to offer more complicated arguments. Indeed, with just a
small starter pack of rules of inference, we hope to capture all valid arguments.

This is a very different way of thinking about arguments.
With truth tables, we directly consider different ways to make sentences

true or false. With natural deduction systems, we manipulate sentences in
accordance with rules that we have set down as good rules. The latter promises
to give us a better insight—or at least, a different insight—into how arguments
work.

The move to natural deduction might be motivated by more than the search
for insight. It might also be motivated by necessity. Consider:

A1 → C1 .˙. (A1 ∧A2 ∧A3 ∧A4 ∧A5) → (C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5)

To test this argument for validity, you might use a 1024-line truth table. If
you do it correctly, then you will see that there is no line on which all the
premises are true and on which the conclusion is false. So you will know that
the argument is valid. (But, as just mentioned, there is a sense in which you
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will not know why the argument is valid.) But now consider:

A1 → C1 .˙. (A1 ∧A2 ∧A3 ∧A4 ∧A5 ∧A6 ∧A7 ∧A8 ∧A9 ∧A10) →
(C1 ∨ C2 ∨ C3 ∨ C4 ∨ C5 ∨ C6 ∨ C7 ∨ C8 ∨ C9 ∨ C10)

This argument is also valid—as you can probably tell—but to test it requires
a truth table with 220 = 1048576 lines. In principle, we can set a machine to
grind through truth tables and report back when it is finished. In practice,
complicated arguments in TFL can become intractable if we use truth tables.

When we get to FOL, though, the problem gets dramatically worse. There is
nothing like the truth table test for FOL. To assess whether or not an argument
is valid, we have to reason about all interpretations. But there are infinitely
many possible interpretations. We cannot even in principle set a machine to
grind through infinitely many possible interpretations and report back when
it is finished: it will never finish. We either need to come up with some more
efficient way of reasoning about all interpretations, or we need to look for
something different.

There are, indeed, systems that codify ways to reason about all possible
interpretations. They were developed in the 1950s by Evert Beth and Jaakko
Hintikka. But we shall not follow this path. We shall, instead, look to natural
deduction.

Rather than reasoning directly about all valuations (in the case of TFL) or
all interpretations (in the case of FOL), we shall try to select a few basic rules
of inference. Some of these will govern the behaviour of the sentential connec-
tives. Others will govern the behaviour of the quantifiers and identity. The
resulting system of rules will give us a new way to think about the validity of
arguments. The modern development of natural deduction dates from simul-
taneous and unrelated papers by Gerhard Gentzen and Stanis law Jaśkowski
(1934). However, the natural deduction system that we shall consider is based
largely around work by Frederic Fitch (first published in 1952).
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We will develop a natural deduction system. For each connective, there
will be introduction rules, that allow us to prove a sentence that has that
connective as the main logical operator, and elimination rules, that allow
us to prove something given a sentence that has that connective as the main
logical operator

26.1 The idea of a formal proof

A formal proof is a sequence of sentences, some of which are marked as being
initial assumptions (or premises). The last line of the formal proof is the
conclusion. (Henceforth, I shall simply call these ‘proofs’, but you should be
aware that there are informal proofs too.)

As an illustration, consider:

¬(A ∨B) .˙. ¬A ∧ ¬B

We shall start a proof by writing the premise:

1 ¬(A ∨B)

Note that we have numbered the premise, since we shall want to refer back to
it. Indeed, every line on a proof is numbered, so that we can refer back to it.

Note also that we have drawn a line underneath the premise. Everything
written above the line is an assumption. Everything written below the line will
either be something which follows from the assumptions, or it will be some
new assumption. We are hoping to conclude that ‘¬A∧¬B’; so we are hoping
ultimately to conclude our proof with

n ¬A ∧ ¬B

for some number n. It doesn’t matter, which line we end on, but we would
obviously prefer a short proof to a long one.

Similarly, suppose we wanted to consider:

A ∨B,¬(A ∧ C),¬(B ∧ ¬D) .˙. ¬C ∨D

The argument has three premises, so we start by writing them all down, num-
bered, and drawing a line under them:
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1 A ∨B

2 ¬(A ∧ C)

3 ¬(B ∧ ¬D)

and we are hoping to conclude with some line:

n ¬C ∨D

All that remains to do is to explain each of the rules that we can use along
the way from premises to conclusion. The rules are broken down by our logical
connectives.

26.2 Conjunction

Suppose I want to show that Ludwig is both reactionary and libertarian. One
obvious way to do this would be as follows: first I show that Ludwig is reac-
tionary; then I show that Ludwig is libertarian; then I put these two demon-
strations together, to obtain the conjunction.

Our natural deduction system will capture this thought straightforwardly.
In the example given, I might adopt the following symbolisation key:

R: Ludwig is reactionary
L: Ludwig is libertarian

Perhaps I am working through a proof, and I have obtained ‘R’ on line 8 and
‘L’ on line 15. Then on any subsequent line I can obtain ‘R ∧ L’ thus:

8 R

15 L

R ∧ L ∧I 8, 15

Note that every line of our proof must either be an assumption, or must be
justified by some rule. We cite ‘∧I 8, 15’ here to indicate that the line is
obtained by the rule of conjunction introduction (∧I) applied to lines 8 and 15.
I could equally well obtain:

8 R

15 L

L ∧R ∧I 15, 8

with the citation reverse, to reflect the order of the conjuncts. More generally,
here is our conjunction introduction rule:

m A

n B

A ∧ B ∧I m, n



26. Basic rules for TFL 115

To be clear, the statement of the rule is schematic. It is not itself a proof. ‘A ’
and ‘B ’ are not sentences of TFL. Rather, they are symbols in the metalan-
guage, which we use when we want to talk about any sentence of TFL (see
§7). Similarly, ‘m’ and ‘n’ are not a numerals that will appear on any actual
proof. Rather, they are symbols in the metalanguage, which we use when we
want to talk about any line number of any proof. In an actual proof, the lines
are numbered ‘1’, ‘2’, ‘3’, and so forth. But when we define the rule, we use
variables to emphasise that the rule may be applied at any point. The rule
requires only that we have both conjuncts available to us somewhere in the
proof. They can be separated from one another, and they can appear in any
order.

The rule is called ‘conjunction introduction’ because it introduces the sym-
bol ‘∧’ into our proof where it may have been absent. Correspondingly, we
have a rule that eliminates that symbol. Suppose you have shown that Ludwig
is both reactionary and libertarian. You are entitled to conclude that Ludwig
is reactionary. Equally, you are entitled to conclude that Ludwig is libertarian.
Putting this together, we obtain our conjunction elimination rule(s):

m A ∧ B

A ∧E m

and equally:

m A ∧ B

B ∧E m

The point is simply that, when you have a conjunction on some line of a proof,
you can obtain either of the conjuncts by ∧E. (One point, might be worth
emphasising: you can only apply this rule when conjunction is the main logical
operator. So you cannot infer ‘D’ just from ‘C ∨ (D ∧ E)’ !)

Even with just these two rules, we can start to see some of the power of our
formal proof system. Consider:

[(A ∨B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H)]
.˙. [(E ∨ F ) → (G ∨H)] ∧ [(A ∨B) → (C ∨D)]

The main logical operator in both the premise and conclusion of this argument
is ‘∧’. In order to provide a proof, we begin by writing down the premise,
which is our assumption. We draw a line below this: everything after this line
must follow from our assumptions by (repeated applications of) our rules of
inference. So the beginning of the proof looks like this:

1 [(A ∨B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H)]

From the premise, we can get each of the conjuncts by ∧E. The proof now
looks like this:
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1 [(A ∨B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H)]

2 [(A ∨B) → (C ∨D)] ∧E 1

3 [(E ∨ F ) → (G ∨H)] ∧E 1

So by applying the ∧I rule to lines 3 and 2 (in that order), we arrive at the
desired conclusion. The finished proof looks like this:

1 [(A ∨B) → (C ∨D)] ∧ [(E ∨ F ) → (G ∨H)]

2 [(A ∨B) → (C ∨D)] ∧E 1

3 [(E ∨ F ) → (G ∨H)] ∧E 1

4 [(E ∨ F ) → (G ∨H)] ∧ [(A ∨B) → (C ∨D)] ∧I 3, 2

This is a very simple proof, but it shows how we can chain rules of proof
together into longer proofs. In passing, note that investigating this argument
with a truth table would have required a staggering 256 lines; our formal proof
required only four lines.

It is worth giving another example. Way back in §10.3, we noted that this
argument is valid:

A ∧ (B ∧ C) .˙. (A ∧B) ∧ C

To provide a proof corresponding with this argument, we start by writing:

1 A ∧ (B ∧ C)

From the premise, we can get each of the conjuncts by applying ∧E twice. And
we can then apply ∧E twice more, so our proof looks like:

1 A ∧ (B ∧ C)

2 A ∧E 1

3 B ∧ C ∧E 1

4 B ∧E 3

5 C ∧E 3

But now we can merrily reintroduce conjunctions in the order we wanted them,
so that our final proof is:

1 A ∧ (B ∧ C)

2 A ∧E 1

3 B ∧ C ∧E 1

4 B ∧E 3

5 C ∧E 3

6 A ∧B ∧I 2, 4

7 (A ∧B) ∧ C ∧I 6, 5
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Recall that our official definition of sentences in TFL only allowed conjunctions
with two conjuncts. When we discussed semantics, we became a bit more
relaxed, and allowed ourselves to drop inner brackets in long conjunctions, since
the order of the brackets did not affect the truth table. The proof just given
suggests that we could also drop inner brackets in all of our proofs. However,
this is not standard, and we shall not do this. Instead, we shall return to the
more austere bracketing conventions. (Though we will allow ourselves to drop
outermost brackets, for legibility.)

Let me offer one final illustration. When using the ∧I rule, there is no need
to apply it to different sentences. So we can formally prove ‘A’ from ‘A’ as
follows:

1 A

2 A ∧A ∧I 1, 1

3 A ∧E 2

Simple, but effective.

26.3 Conditional

Consider the following argument:

If Jane is smart then she is fast. Jane is smart. So Jane is fast.

This argument is certainly valid. And it suggests a straightforward conditional
elimination rule (→E):

m A → B

n A

B →E m, n

This rule is also sometimes called modus ponens. Again, this is an elimination
rule, because it allows us to obtain a sentence that may not contain ‘→’, having
started with a sentence that did contain ‘→’. Note that the conditional, and
the antecedent, can be separated from one another, and they can appear in any
order. However, in the citation for →E, we always cite the conditional first,
followed by the antecedent.

The rule for conditional introduction is also quite easy to motivate. The
following argument should be valid:

Ludwig is reactionary. Therefore if Ludwig is libertarian, then Lud-
wig is both reactionary and libertarian.

If someone doubted that this was valid, we might try to convince them other-
wise by explaining ourselves as follows:
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Assume that Ludwig is reactionary. Now, additionally assume that
Ludwig is libertarian. Then by conjunction introduction—which
we just discussed—Ludwig is both reactionary and libertarian. Of
course, that’s conditional on the assumption that Ludwig is liber-
tarian. But this just means that, if Ludwig is libertarian, then he
is both reactionary and libertarian.

Transferred into natural deduction format, here is the pattern of reasoning that
we just used. We started with one premise, ‘Ludwig is reactionary’, thus:

1 R

The next thing we did is to make an additional assumption (‘Ludwig is libertar-
ian’), for the sake of argument. To indicate that we are no longer dealing merely
with our original assumption (‘R’), but with some additional assumption, we
continue our proof as follows:

1 R

2 L

Note that we are not claiming, on line 2, to have proved ‘L’ from line 1. So we
do not need to write in any justification for the additional assumption on line
2. We do, however, need to mark that it is an additional assumption. We do
this by drawing a line under it (to indicate that it is an assumption) and by
indenting it with a further vertical line (to indicate that it is additional).

With this extra assumption in place, we are in a position to use ∧I. So we
could continue our proof:

1 R

2 L

3 R ∧ L ∧I 1, 2

So we have now shown that, on the additional assumption, ‘L’, we can obtain
‘R ∧ L’. We can therefore conclude that, if ‘L’ obtains, then so does ‘R ∧ L’.
Or, to put it more briefly, we can conclude ‘L → (R ∧ L)’:

1 R

2 L

3 R ∧ L ∧I 1, 2

4 L → (R ∧ L) →I 2–3

Observe that we have dropped back to using one vertical line. We have dis-
charged the additional assumption, ‘L’, since the conditional itself follows just
from our original assumption, ‘R’.

The general pattern at work here is the following. We first make an ad-
ditional assumption, A; and from that additional assumption, we prove B. In
that case, we know the following: If A, then B. This is wrapped up in the rule
for conditional introduction:
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i A

j B

A → B →I i–j

There can be as many or as few lines as you like between lines i and j.
It will help to offer a second illustration of →I in action. Suppose we want

to consider the following:

P → Q,Q → R .˙. P → R

We start by listing both of our premises. Then, since we want to arrive at a
conditional (namely, ‘P → R’), we additionally assume the antecedent to that
conditional. Thus our main proof starts:

1 P → Q

2 Q → R

3 P

Note that we have made ‘P ’ available, by treating it as an additional assump-
tion. But now, we can use →E on the first premise. This will yield ‘Q’. And
we can then use →E on the second premise. So, by assuming ‘P ’ we were able
to prove ‘R’, so we apply the →I rule—discharging ‘P ’—and finish the proof.
Putting all this together, we have:

1 P → Q

2 Q → R

3 P

4 Q →E 1, 3

5 R →E 2, 4

6 P → R →I 3–5

26.4 Additional assumptions and subproofs

The rule →I invoked the idea of making additional assumptions. These need
to be handled with some care.

Consider this proof:
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1 A

2 B

3 B ∧B ∧I 2, 2

4 B ∧E 3

5 B → B →I 2–4

This is perfectly in keeping with the rules we have laid down already. And
it should not seem particularly strange. Since ‘B → B’ is a tautology, no
particular premises should be required to prove it.

But suppose we now tried to continue the proof as follows:

1 A

2 B

3 B ∧B ∧I 2, 2

4 B ∧E 3

5 B → B →I 2–4

6 B naughty attempt to invoke →E 5, 4

If we were allowed to do this, it would be a disaster. It would allow us to prove
any atomic sentence letter from any other atomic sentence letter. But if you
tell me that Anne is fast (symbolised by ‘A’), I shouldn’t be able to conclude
that Queen Boudica stood twenty-feet tall (symbolised by ‘B’)! So we must be
prohibited from doing this. But how are we to implement the prohibition?

We can describe the process of making an additional assumption as one of
performing a subproof : a subsidiary proof within the main proof. When we
start a subproof, we draw another vertical line to indicate that we are no longer
in the main proof. Then we write in the assumption upon which the subproof
will be based. A subproof can be thought of as essentially posing this question:
what could we show, if we also make this additional assumption?

When we are working within the subproof, we can refer to the additional
assumption that we made in introducing the subproof, and to anything that we
obtained from our original assumptions. (After all, those original assumptions
are still in effect.) But at some point, we shall want to stop working with the
additional assumption: we shall want to return from the subproof to the main
proof. To indicate that we have returned to the main proof, the vertical line
for the subproof comes to an end. At this point, we say that the subproof is
closed. Having closed a subproof, we have set aside the additional assump-
tion, so it will be illegitimate to draw upon anything that depends upon that
additional assumption. Thus we stipulate:

Any rule whose citation requires mentioning individual lines can
mention any earlier lines, except for those lines which occur within
a closed subproof.
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This stipulation rules out the disastrous attempted proof above. The rule of
→E requires that we cite two individual lines from earlier in the proof. In
the purported proof, above, one of these lines (namely, line 4) occurs within a
subproof that has (by line 6) been closed. This is illegitimate.

Closing a subproof is called discharging the assumptions of that subproof.
So we can put the point this way: you cannot refer back to anything that was
obtained using discharged assumptions.

Subproofs, then, allow us to think about what we could show, if we made
additional assumptions. The point to take away from this is not surprising—in
the course of a proof, we have to keep very careful track of what assumptions we
are making, at any given moment. Our proof system does this very graphically.
(Indeed, that’s precisely why we have chosen to use this proof system.)

Once we have started thinking about what we can show by making addi-
tional assumptions, nothing stops us from posing the question of what we could
show if we were to make even more assumptions? This might motivate us to
introduce a subproof within a subproof. Here is an example which only uses
the rules of proof that we have considered so far:

1 A

2 B

3 C

4 A ∧B ∧I 1, 2

5 C → (A ∧B) →I 3–4

6 B → (C → (A ∧B)) →I 2–5

Notice that the citation on line 4 refers back to the initial assumption (on line
1) and an assumption of a subproof (on line 2). This is perfectly in order, since
neither assumption has been discharged at the time (i.e. by line 4).

Again, though, we need to keep careful track of what we are assuming at
any given moment. For suppose we tried to continue the proof as follows:

1 A

2 B

3 C

4 A ∧B ∧I 1, 2

5 C → (A ∧B) →I 3–4

6 B → (C → (A ∧B)) →I 2–5

7 C → (A ∧B) naughty attempt to invoke →I 3–4

This would be awful. If I tell you that Anne is smart, you should not be able
to infer that, if Cath is smart (symbolised by ‘C’) then both Anne is smart and
Queen Boudica stood 20-feet tall! But this is just what such a proof would
suggest, if it were permissible.
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The essential problem is that the subproof that began with the assumption
‘C’ depended crucially on the fact that we had assumed ‘B’ on line 2. By line
6, we have discharged the assumption ‘B’: we have stopped asking ourselves
what we could show, if we also assumed ‘B’. So it is simply cheating, to try to
help ourselves (on line 7) to the subproof that began with the assumption ‘C’.
Thus we stipulate, much as before:

Any rule whose citation requires mentioning an entire subproof can
mention any earlier subproof, except for those subproofs which oc-
cur within some other closed subproof.

The attempted disastrous proof violates this stipulation. The subproof of lines
3–4 occurs within a subproof that ends on line 5. So it cannot be invoked in
line 7.

It is always permissible to open a subproof with any assumption. However,
there is some strategy involved in picking a useful assumption. Starting a
subproof with an arbitrary, wacky assumption would just waste lines of the
proof. In order to obtain a conditional by →I, for instance, you must assume
the antecedent of the conditional in a subproof.

Equally, it is always permissible to close a subproof and discharge its as-
sumptions. However, it will not be helpful to do so, until you have reached
something useful.

26.5 Biconditional

The rules for the biconditional will be like double-barrelled versions of the rules
for the conditional.

In order to prove ‘W ↔ X’, for instance, you must be able to prove ‘X’ on
the assumption ‘W ’ and prove ‘W ’ on the assumption ‘X’. The biconditional
introduction rule (↔I) therefore requires two subproofs. Schematically, the
rule works like this:

i A

j B

k B

l A

A ↔ B ↔I i–j, k–l

There can be as many lines as you like between i and j, and as many lines as
you like between k and l. Moreover, the subproofs can come in any order, and
the second subproof does not need to come immediately after the first.

The biconditional elimination rule (↔E) lets you do a bit more than the
conditional rule. If you have the left-hand subsentence of the biconditional, you
can obtain the right-hand subsentence. If you have the right-hand subsentence,
you can obtain the left-hand subsentence. So we allow:
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m A ↔ B

n A

B ↔E m, n

and equally:

m A ↔ B

n B

A ↔E m, n

Note that the biconditional, and the right or left half, can be separated from
one another, and they can appear in any order. However, in the citation for
↔E, we always cite the biconditional first.

26.6 Disjunction

Suppose Ludwig is reactionary. Then Ludwig is either reactionary or libertar-
ian. After all, to say that Ludwig is either reactionary or libertarian is to say
something weaker than to say that Ludwig is reactionary.

Let me emphasise this point. Suppose Ludwig is reactionary. It follows
that Ludwig is either reactionary or a kumquat. Equally, it follows that either
Ludwig is reactionary or that kumquats are the only fruit. Equally, it follows
that either Ludwig is reactionary or that God is dead. Many of these things
are strange inferences to draw. But there is nothing logically wrong with them
(even if they maybe violate all sorts of implicit conversational norms).

Armed with all this, I present the disjunction introduction rule(s):

m A

A ∨ B ∨I m

and

m A

B ∨ A ∨I m

Notice that B can be any sentence whatsoever. So the following is a perfectly
kosher proof:

1 M

2 M ∨ ([(A ↔ B) → (C ∧D)] ↔ [E ∧ F ]) ∨I 1
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Using a truth table to show this would have taken 128 lines.
The disjunction elimination rule is, though, slightly trickier. Suppose that

either Ludwig is reactionary or he is libertarian. What can you conclude? Not
that Ludwig is reactionary; it might be that he is libertarian instead. And
equally, not that Ludwig is libertarian; for he might merely be reactionary.
Disjunctions, just by themselves, are hard to work with.

But suppose that we could somehow show both of the following: first, that
Ludwig’s being reactionary entails that he is an Austrian economist: second,
that Ludwig’s being libertarian entails that he is an Austrian economist. Then
if we know that Ludwig is either reactionary or libertarian, then we know
that, whichever he is, Ludwig is an Austrian economist. This insight can be
expressed in the following rule, which is our disjunction elimination (∨E) rule:

m A ∨ B

i A

j C

k B

l C

C ∨E m, i–j, k–l

This is obviously a bit clunkier to write down than our previous rules, but the
point is fairly simple. Suppose we have some disjunction, A ∨ B . Suppose we
have two subproofs, showing us that C follows from the assumption that A ,
and that C follows from the assumption that B . Then we can infer C itself.
As usual, there can be as many lines as you like between i and j, and as many
lines as you like between k and l. Moreover, the subproofs and the disjunction
can come in any order, and do not have to be adjacent.

Some examples might help illustrate this. Consider this argument:

(P ∧Q) ∨ (P ∧R) .˙. P

An example proof might run thus:

1 (P ∧Q) ∨ (P ∧R)

2 P ∧Q

3 P ∧E 2

4 P ∧R

5 P ∧E 4

6 P ∨E 1, 2–3, 4–5

Here is a slightly harder example. Consider:

A ∧ (B ∨ C) .˙. (A ∧B) ∨ (A ∧ C)

Here is a proof corresponding to this argument:
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1 A ∧ (B ∨ C)

2 A ∧E 1

3 B ∨ C ∧E 1

4 B

5 A ∧B ∧I 2, 4

6 (A ∧B) ∨ (A ∧ C) ∨I 5

7 C

8 A ∧ C ∧I 2, 7

9 (A ∧B) ∨ (A ∧ C) ∨I 8

10 (A ∧B) ∨ (A ∧ C) ∨E 3, 4–6, 7–9

Don’t be alarmed if you think that you wouldn’t have been able to come up
with this proof yourself. The ability to come up with novel proofs will come
with practice. The key question at this stage is whether, looking at the proof,
you can see that it conforms with the rules that we have laid down. And
that just involves checking every line, and making sure that it is justified in
accordance with the rules we have laid down.

26.7 Contradiction

We have only one connective left to deal with: negation. But we shall not
tackle negation directly. Instead, we shall first think about contradiction.

An effective form of argument is to argue your opponent into contradicting
themselves. At that point, you have them on the ropes. They have to give up
at least one of their assumptions. We are going to make use of this idea in our
proof system, by adding a new symbol, ‘⊥’, to our proofs. This should be read
as something like ‘contradiction!’ or ‘reductio!’ or ‘but that’s absurd!’ And the
rule for introducing this symbol is that we can use it whenever we explicitly
contradict ourselves, i.e. whenever we find both a sentence and its negation
appearing in our proof:

m A

n ¬A

⊥ ⊥I m, n

It does not matter what order the sentence and its negation appear in, and
they do not need to appear on adjacent lines. However, we always cite the
sentence first, followed by its negation.

Our elimination rule for ‘⊥’ is known as ex falso quod libet. This means
‘anything follows from a contradiction’. And the idea is precisely that: if we
obtained a contradiction, symbolised by ‘⊥’, then we can infer whatever we
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like. How can this be motivated, as a rule of argumentation? Well, consider
the English rhetorical device ‘. . . and if that’s true, I’ll eat my hat’. Since
contradictions simply cannot be true, if one is true then not only will I eat my
hat, I’ll have it too.1 Here is the formal rule:

m ⊥

A ⊥E m

Note that A can be any sentence whatsoever.
A final remark. I have said that ‘⊥’ should be read as something like

‘contradiction!’ But this does not tell us much about the symbol. There are,
roughly, three ways to approach the symbol.

• We might regard ‘⊥’ as a new atomic sentence of TFL, but one which
can only ever have the truth value False.

• We might regard ‘⊥’ as an abbreviation for some canonical contradiction,
such as ‘A∧¬A’. This will have the same effect as the above—obviously,
‘A∧¬A’ only ever has the truth value False—but it means that, officially,
we do not need to add a new symbol to TFL.

• We might regard ‘⊥’, not as a symbol of TFL, but as something more
like a punctuation mark that appears in our proofs. (It is on a par with
the line numbers and the vertical lines, say.)

There is something very philosophically attractive about the third option. But
here I shall officially plump for the second. ‘⊥’ is to be read as abbreviating
some canonical contradiction. This means that we can manipulate it, in our
proofs, just like any other sentence.

26.8 Negation

There is obviously a tight link between contradiction and negation. Indeed,
the ⊥I rule essentially behaves as a rule for negation elimination: we introduce
‘⊥’ when a sentence and its negation both appear in our proof. So there is no
need for us to add a further rule for negation elimination.

However, we do need to state a rule for negation introduction. The rule
is very simple: if assuming something leads you to a contradiction, then the
assumption must be wrong. This thought motivates the following rule:

i A

j ⊥

¬A ¬I i–j

There can be as many lines between i and j as you like. To see this in practice,
and interacting with negation, consider this proof:

1Thanks to Adam Caulton for this.
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1 D

2 ¬D

3 ⊥ ⊥I 1, 2

4 ¬¬D ¬I 2–3

We shall also add another rule for negation. It is much like the rule used in
disjunction elimination, and it requires a little motivation.

Suppose that we can show that if it’s sunny outside, then Bill will have
brought an umbrella (for fear of burning). Suppose we can also show that, if
it’s not sunny outside, then Bill will have brought an umbrella (for fear of rain).
Well, there is no third way for the weather to be. So, whatever the weather,
Bill will have brought an umbrella.

This line of thinking motivates the following rule:

i A

j B

k ¬A

l B

B TND i–j, k–l

The rule is sometimes called tertium non datur, which means ‘no third way’.
There can be as many lines as you like between i and j, and as many lines as
you like between k and l. Moreover, the subproofs can come in any order, and
the second subproof does not need to come immediately after the first.

To see the rule in action, consider:

P .˙. (P ∧D) ∨ (P ∧ ¬D)

Here is a proof corresponding with the argument:

1 P

2 D

3 P ∧D ∧I 1, 2

4 (P ∧D) ∨ (P ∧ ¬D) ∨I 3

5 ¬D

6 P ∧ ¬D ∧I 1, 5

7 (P ∧D) ∨ (P ∧ ¬D) ∨I 6

8 (P ∧D) ∨ (P ∧ ¬D) TND 2–4, 5–7

These are all of the basic rules for the proof system for TFL.
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Practice exercises

A. The following two ‘proofs’ are incorrect. Explain the mistakes they make.

1 ¬L → (A ∧ L)

2 ¬L

3 A →E 1, 2

4 L

5 ⊥ ⊥I 4, 2

6 A ⊥E 5

7 A TND 2–3, 4–6

1 A ∧ (B ∧ C)

2 (B ∨ C) → D

3 B ∧E 1

4 B ∨ C ∨I 3

5 D →E 4, 2

B. The following three proofs are missing their citations (rule and line num-
bers). Add them, to turn them into bona fide proofs. Additionally, write down
the argument that corresponds to each proof.

1 P ∧ S

2 S → R

3 P

4 S

5 R

6 R ∨ E

1 A → D

2 A ∧B

3 A

4 D

5 D ∨ E

6 (A ∧B) → (D ∨ E)

1 ¬L → (J ∨ L)

2 ¬L

3 J ∨ L

4 J

5 J ∧ J

6 J

7 L

8 ⊥

9 J

10 J

C. Give a proof for each of the following arguments:

1. J → ¬J .˙. ¬J
2. Q → (Q ∧ ¬Q) .˙. ¬Q
3. A → (B → C) .˙. (A ∧B) → C
4. K ∧ L .˙. K ↔ L
5. (C ∧D) ∨ E .˙. E ∨D
6. A ↔ B,B ↔ C .˙. A ↔ C
7. ¬F → G,F → H .˙. G ∨H
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8. (Z ∧K) ∨ (K ∧M),K → D .˙. D
9. P ∧ (Q ∨R), P → ¬R .˙. Q ∨ E

10. S ↔ T .˙. S ↔ (T ∨ S)
11. ¬(P → Q) .˙. ¬Q
12. ¬(P → Q) .˙. P
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In §26, we introduced the basic rules of our proof system for TFL. In this
section, we shall add some additional rules to our system. These will make our
system much easier to work with. (However, in §30 we will see that they are
not strictly speaking necessary.)

27.1 Reiteration

The first additional rule is reiteration (R). This just allows us to repeat our-
selves:

m A

A R m

Such a rule is obviously legitimate; but one might well wonder how such a rule
could ever be useful. Well, consider:

1 A → ¬A

2 A

3 ¬A →E 1, 2

4 ¬A

5 ¬A R 4

6 ¬A TND 2–3, 4–5

This is a fairly typical use of the R rule.

27.2 Disjunctive syllogism

Here is a very natural argument form.

Mitt is either in Massachusetts or in DC. He is not in DC. So, he
is in Massachusetts.

This inference pattern is called disjunctive syllogism. We add it to our proof
system as follows:

130
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m A ∨ B

n ¬A

B DS m, n

and

m A ∨ B

n ¬B

A DS m, n

As usual, the disjunction and the negation of one disjunct may occur in either
order and need not be adjacent. However, we always cite the disjunction first.
(This is, if you like, a new rule of disjunction elimination.)

27.3 Modus tollens

Another useful pattern of inference is embodied in the following argument:

If Mitt has won the election, then he is in the White House. He is
not in the White House. So he has not won the election.

This inference pattern is called modus tollens. The corresponding rule is:

m A → B

n ¬B

¬A MT m, n

As usual, the premises may occur in either order, but we always cite the con-
ditional first. (This is, if you like, a new rule of conditional elimination.)

27.4 Double-negation elimination

Another useful rule is double-negation elimination. This rule does exactly what
it says on the tin:

m ¬¬A

A DNE m
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The justification for this is that, in natural language, double-negations tend to
cancel out.

That said, you should be aware that context and emphasis can prevent them
from doing so. Consider: ‘Jane is not not happy’. Arguably, one cannot infer
‘Jane is happy’, since the first sentence should be understood as meaning the
same as ‘Jane is not unhappy’. This is compatible with ‘Jane is in a state of
profound indifference’. As usual, moving to TFL forces us to sacrifice certain
nuances of English expressions.

27.5 De Morgan Rules

Our final additional rules are called De Morgan’s Laws. (These are named
after August De Morgan.) The shape of the rules should be familiar from
truth tables.

The first De Morgan rule is:

m ¬(A ∧ B)

¬A ∨ ¬B DeM m

The second De Morgan is the reverse of the first:

m ¬A ∨ ¬B

¬(A ∧ B) DeM m

The third De Morgan rule is the dual of the first:

m ¬(A ∨ B)

¬A ∧ ¬B DeM m

And the fourth is the reverse of the third:

m ¬A ∧ ¬B

¬(A ∨ B) DeM m

These are all of the additional rules of our proof system for TFL.

Practice exercises

A. The following proofs are missing their citations (rule and line numbers).
Add them wherever they are required:
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1 W → ¬B

2 A ∧W

3 B ∨ (J ∧K)

4 W

5 ¬B

6 J ∧K

7 K

1 L ↔ ¬O

2 L ∨ ¬O

3 ¬L

4 ¬O

5 L

6 ⊥

7 ¬¬L

8 L

1 Z → (C ∧ ¬N)

2 ¬Z → (N ∧ ¬C)

3 ¬(N ∨ C)

4 ¬N ∧ ¬C

5 ¬N

6 ¬C

7 Z

8 C ∧ ¬N

9 C

10 ⊥

11 ¬Z

12 N ∧ ¬C

13 N

14 ⊥

15 ¬¬(N ∨ C)

16 N ∨ C

B. Give a proof for each of these arguments:

1. E ∨ F , F ∨G, ¬F .˙. E ∧G
2. M ∨ (N → M) .˙. ¬M → ¬N
3. (M ∨N) ∧ (O ∨ P ), N → P , ¬P .˙. M ∧O
4. (X ∧ Y ) ∨ (X ∧ Z), ¬(X ∧D), D ∨M .˙.M
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We shall introduce some new vocabulary. The following expression:

A1,A2, . . . ,An ⊢ C

means that there is some proof which starts with assumptions among
A1,A2, . . . ,An and ends with C (and no undischarged assumptions other than
those we started with). Derivatively, we shall write:

⊢ A

to mean that there is a proof of A with no assumptions.
The symbol ‘⊢’ is called the single turnstile. I want to emphasise that this

is not the double turnstile symbol (‘⊨’) that we used to symbolise entailment in
chapters 3 and 5. The single turnstile, ‘⊢’, concerns the existence of proofs; the
double turnstile, ‘⊨’, concerns the existence of valuations (or interpretations,
when used for FOL). They are very different notions.

Armed with our ‘⊢’ symbol, we can introduce a new terminology.

A is a theorem iff ⊢ A

To illustrate this, suppose I want to prove that ‘¬(A ∧ ¬A)’ is a theorem. So
I must start my proof without any assumptions. However, since I want to
prove a sentence whose main logical operator is a negation, I shall want to
immediately begin a subproof, with the additional assumption ‘A ∧ ¬A’, and
show that this leads to contradiction. All told, then, the proof looks like this:

1 A ∧ ¬A

2 A ∧E 1

3 ¬A ∧E 1

4 ⊥ ⊥I 2, 3

5 ¬(A ∧ ¬A) ¬I 1–4

We have therefore proved ‘¬(A∧¬A)’ on no (undischarged) assumptions. This
particular theorem is an instance of what is sometimes called the Law of Non-
Contradiction.

To show that something is a theorem, you just have to find a suitable proof.
It is typically much harder to show that something is not a theorem. To do
this, you would have to demonstrate, not just that certain proof strategies fail,
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but that no proof is possible. Even if you fail in trying to prove a sentence in
a thousand different ways, perhaps the proof is just too long and complex for
you to make out. Perhaps you just didn’t try hard enough.

Here is another new bit of terminology:

Two sentences A and B are provably equivalent iff each can be
proved from the other; i.e., both A ⊢ B and B ⊢ A .

As in the case of showing that a sentence is a theorem, it is relatively easy
to show that two sentences are provably equivalent: it just requires a pair of
proofs. Showing that sentences are not provably equivalent would be much
harder: it is just as hard as showing that a sentence is not a theorem.

Here is a third, related, bit of terminology:

The sentences A1,A2, . . . ,An are jointly contrary iff a contra-
diction can be proved from them, i.e. A1,A2, . . . ,An ⊢ ⊥.

It is easy to show that some sentences are jointly contrary: you just need to
prove a contradiction from assuming all the sentences. Showing that some
sentences are not jointly contrary is much harder. It would require more than
just providing a proof or two; it would require showing that no proof of a
certain kind is possible.

This table summarises whether one or two proofs suffice, or whether we must
reason about all possible proofs.

Yes No
theorem? one proof all possible proofs
equivalent? two proofs all possible proofs
not contrary? all possible proofs one proof

Practice exercises

A. Show that each of the following sentences is a theorem:

1. O → O
2. N ∨ ¬N
3. J ↔ [J ∨ (L ∧ ¬L)]
4. ((A → B) → A) → A

B. Provide proofs to show each of the following:

1. C → (E ∧G),¬C → G ⊢ G
2. M ∧ (¬N → ¬M) ⊢ (N ∧M) ∨ ¬M
3. (Z ∧K) ↔ (Y ∧M), D ∧ (D → M) ⊢ Y → Z
4. (W ∨X) ∨ (Y ∨ Z), X → Y,¬Z ⊢ W ∨ Y

C. Show that each of the following pairs of sentences are provably equivalent:

1. R ↔ E, E ↔ R
2. G, ¬¬¬¬G
3. T → S, ¬S → ¬T
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4. U → I, ¬(U ∧ ¬I)
5. ¬(C → D), C ∧ ¬D
6. ¬G ↔ H, ¬(G ↔ H)

D. If you know that A ⊢ B , what can you say about (A ∧ C ) ⊢ B? What
about (A ∨ C ) ⊢ B? Explain your answers.

E. In this section, I claimed that it is just as hard to show that two sentences
are not provably equivalent, as it is to show that a sentence is not a theorem.
Why did I claim this? (Hint : think of a sentence that would be a theorem iff
A and B were provably equivalent.)
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There is no simple recipe for proofs, and there is no substitute for practice.
Here, though, are some rules of thumb and strategies to keep in mind.

Work backwards from what you want. The ultimate goal is to obtain
the conclusion. Look at the conclusion and ask what the introduction rule is
for its main logical operator. This gives you an idea of what should happen
just before the last line of the proof. Then you can treat this line as if it were
your goal. Ask what you could do to get to this new goal.

For example: If your conclusion is a conditional A → B , plan to use the →I
rule. This requires starting a subproof in which you assume A . The subproof
ought to end with B . So, what can you do to get B?

Work forwards from what you have. When you are starting a proof,
look at the premises; later, look at the sentences that you have obtained so far.
Think about the elimination rules for the main operators of these sentences.
These will tell you what your options are.

For a short proof, you might be able to eliminate the premises and introduce
the conclusion. A long proof is formally just a number of short proofs linked
together, so you can fill the gap by alternately working back from the conclusion
and forward from the premises.

Try proceeding indirectly. If you cannot find a way to show A directly,
try starting by assuming ¬A . If a contradiction follows, then you will be able
to obtain ¬¬A by ¬I, and then A by DNE.

Persist. Try different things. If one approach fails, then try something else.
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In this section, we shall see why I introduced the rules of our proof system in
two separate batches. In particular, I want to show that the additional rules
of §27 are not strictly speaking necessary, but can be derived from the basic
rules of §26.

30.1 Derivation of Reiteration

Suppose you have some sentence on some line of your deduction:

m A

You now want to repeat yourself, on some line k. You could just invoke the
rule R, introduced in §27. But equally well, you can do this with the basic
rules of §26:

m A

k A ∧ A ∧I m

k + 1 A ∧E k

To be clear: this is not a proof. Rather, it is a proof scheme. After all, it
uses a variable, ‘A ’, rather than a sentence of TFL. But the point is simple.
Whatever sentences of TFL we plugged in for ‘A ’, and whatever lines we were
working on, we could produce a bona fide proof. So you can think of this as a
recipe for producing proofs.

Indeed, it is a recipe which shows us that, anything we can prove using the
rule R, we can prove (with one more line) using just the basic rules of §26. So
we can describe the rule R as a derived rule, since its justification is derived
from our basic rules.

30.2 Derivation of Disjunctive syllogism

Suppose that you are in a proof, and you have something of this form:

m A ∨ B

n ¬A

You now want, on line k, to prove B . You can do this with the rule of DS,
introduced in §27. But equally well, you can do this with the basic rules of §26:
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m A ∨ B

n ¬A

k A

k + 1 ⊥ ⊥I k, n

k + 2 B ⊥E k + 1

k + 3 B

k + 4 B ∧ B ∧I k + 3, k + 3

k + 5 B ∧E k + 4

k + 6 B ∨E m, k–k + 2, k + 3–k + 5

So the DS rule, again, can be derived from our more basic rules. Adding it to
our system did not make any new proofs possible. Anytime you use the DS
rule, you could always take a few extra lines and prove the same thing using
only our basic rules. It is a derived rule.

30.3 Derivation of Modus tollens

Suppose you have the following in your proof:

m A → B

n ¬B

You now want, on line k, to prove ¬A . You can do this with the rule of MT,
introduced in §27. But equally well, you can do this with the basic rules of §26:

m A → B

n ¬B

k A

k + 1 B →E m, k

k + 2 ⊥ ⊥I k + 1, n

k + 3 ¬A ¬I k–k + 2

Again, the rule of MT can be derived from the basic rules of §26.

30.4 Derivation of Double-negation elimination

Consider the following deduction scheme:
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m ¬¬A

k A

k + 1 A R k

k + 2 ¬A

k + 3 ⊥ ⊥I k + 2, m

k + 4 A ⊥E k + 3

k + 5 A TND k–k + 1, k + 2–k + 4

Again, then, we can derive the DNE rule from the basic rules of §26.

30.5 Derivation of De Morgan rules

Here is a demonstration of how we could derive the first De Morgan rule:

m ¬(A ∧ B)

k A

k + 1 B

k + 2 A ∧ B ∧I k, k + 1

k + 3 ⊥ ⊥I k + 2, m

k + 4 ¬B ¬I k + 1–k + 3

k + 5 ¬A ∨ ¬B ∨I k + 4

k + 6 ¬A

k + 7 ¬A ∨ ¬B ∨I k + 6

k + 8 ¬A ∨ ¬B TND k–k + 5, k + 6–k + 7

Here is a demonstration of how we could derive the second De Morgan rule:
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m ¬A ∨ ¬B

k A ∧ B

k + 1 A ∧E k

k + 2 B ∧E k

k + 3 ¬A

k + 4 ⊥ ⊥I k + 1, k + 3

k + 5 ¬B

k + 6 ⊥ ⊥I k + 2, k + 5

k + 7 ⊥ ∨E m, k + 3–k + 4, k + 5–k + 6

k + 8 ¬(A ∧ B) ¬I k–k + 7

Similar demonstrations can be offered explaining how we could derive the third
and fourth De Morgan rules. These are left as exercises.

Practice exercises

A. Provide proof schemes that justify the addition of the third and fourth De
Morgan rules as derived rules.

B. The proofs you offered in response to the practice exercises of §§27–28 used
derived rules. Replace the use of derived rules, in such proofs, with only basic
rules. You will find some ‘repetition’ in the resulting proofs; in such cases, offer
a streamlined proof using only basic rules. (This will give you a sense, both of
the power of derived rules, and of how all the rules interact.)



Chapter 7

Natural deduction for FOL
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Basic rules for FOL 31

FOL makes use of all of the connectives of TFL. So proofs in FOL will use all of
the basic and derived rules from chapter 6. We shall also use the proof-theoretic
notions (particularly, the symbol ‘⊢’) introduced in that chapter. However, we
will also need some new basic rules to govern the quantifiers, and to govern the
identity sign.

31.1 Universal elimination

From the claim that everything is F, you can infer that any particular thing is
F. You name it; it’s F. So the following should be fine:

1 ∀xRxxd

2 Raad ∀E 1

We obtained line 2 by dropping the universal quantifier and replacing every
instance of ‘x’ with ‘a’. Equally, the following should be allowed:

1 ∀xRxxd

2 Rddd ∀E 1

We obtained line 2 here by dropping the universal quantifier and replacing
every instance of ‘x’ with ‘d’. We could have done the same with any other
name we wanted.

This motivates the universal elimination rule (∀E):

m ∀xA(. . . x . . . x . . .)

A(. . . c . . . c . . .) ∀E m

The notation here was introduced in §21. The point is that you can obtain any
substitution instance of a universally quantified formula: replace every instance
of the quantified variable with any name you like.

I should emphasise that (as with every elimination rule) you can only apply
the ∀E rule when the universal quantifier is the main logical operator. Thus
the following is outright banned:
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1 ∀xBx → Bk

2 Bb → Bk naughtily attempting to invoke ∀E 1

This is illegitimate, since ‘∀x’ is not the main logical operator in line 1. (If you
need a reminder as to why this sort of inference should be banned, reread §15.)

31.2 Existential introduction

From the claim that some particular thing is an F, you can infer that something
is an F. So we ought to allow:

1 Raad

2 ∃xRaax ∃I 1

Here, we have replaced the name ‘d’ with a variable ‘x’, and then existentially
quantified over it. Equally, we would have allowed:

1 Raad

2 ∃xRxxd ∃I 1

Here we have replaced both instances of the name ‘a’ with a variable, and
then existentially generalised. But we do not need to replace both instances
of a name with a variable. (After all, if Narcissus loves himself, then there is
someone who loves Narcissus.) So we would also allow:

1 Raad

2 ∃xRxad ∃I 1

Here we have replaced one instance of the name ‘a’ with a variable, and then
existentially generalised. These observations motivate our introduction rule,
although to explain it, we shall need to introduce some new notation.

Where A is a sentence containing the name c, we can emphasise this by
writing ‘A(. . . c . . . c . . .)’. We shall write ‘A(. . . x . . . c . . .)’ to indicate any
formula obtained by replacing some or all of the instances of the name c with
the variable x . Armed with this, our introduction rule is:

m A(. . . c . . . c . . .)

∃xA(. . . x . . . c . . .) ∃I m

x must not occur in A(. . . c . . . c . . .)

The constraint is included to guarantee that any application of the rule yields
a sentence of FOL. Thus the following is allowed:
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1 Raad

2 ∃xRxad ∃I 1

3 ∃y∃xRxyd ∃I 2

But this is banned:

1 Raad

2 ∃xRxad ∃I 1

3 ∃x∃xRxxd naughtily attempting to invoke ∃I 2

since the expression on line 3 contains clashing variables, and so fails to count
as a sentence of FOL.

31.3 Empty domains

The following proof combines our two new rules for quantifiers:

1 ∀xFx

2 Fa ∀E 1

3 ∃xFx ∃I 2

Could this be a bad proof? If anything exists at all, then certainly we can infer
that something is F, from the fact that everything is F. But what if nothing
exists at all? Then it is surely vacuously true that everything is F; however,
it does not following that something is F, for there is nothing to be F. So if
we claim that, as a matter of logic alone, ‘∃xFx’ follows from ‘∀xFx’, then we
are claiming that, as a matter of logic alone, there is something rather than
nothing. This might strike us as a bit odd.

Actually, we are already committed to this oddity. In §14, we stipulated
that domains in FOL must have at least one member. We then defined a
logical truth (of FOL) as a sentence which is true in every interpretation.
Since ‘∃x x = x’ will be true in every interpretation, this also had the effect
of stipulating that it is a matter of logic that there is something rather than
nothing.

Since it is far from clear that logic should tell us that there must be some-
thing rather than nothing, we might well be cheating a bit here.

If we refuse to cheat, though, then we pay a high cost. Here are three things
that we want to hold on to:

• ∀xFx ⊢ Fa: after all, that was ∀E.
• Fa ⊢ ∃xFx: after all, that was ∃I.
• the ability to copy-and-paste proofs together: after all, reasoning works

by putting lots of little steps together into rather big chains.

If we get what we want on all three counts, then we have to countenance that
∀xFx ⊢ ∃xFx. So, if we get what we want on all three counts, the proof system
alone tells us that there is something rather than nothing. And if we refuse to
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accept that, then we have to surrender one of the three things that we want to
hold on to!

Before we start thinking about which to surrender, we might want to ask
how much of a cheat this is. Granted, it may make it harder to engage in
theological debates about why there is something rather than nothing. But
the rest of the time, we will get along just fine. So maybe we should just
regard our proof system (and FOL, more generally) as having a very slightly
limited purview. If we ever want to allow for the possibility of nothing, then
we shall have to cast around for a more complicated proof system. But for as
long as we are content to ignore that possibility, our proof system is perfectly
in order. (As, similarly, is the stipulation that every domain must contain at
least one object.)

31.4 Universal introduction

Suppose you had shown of each particular thing that it is F (and that there
are no other things to consider). Then you would be justified in claiming
that everything is F. This would motivate the following proof rule. If you had
established each and every single substitution instance of ‘∀xFx’, then you can
infer ‘∀xFx’.

Unfortunately, that rule would be utterly unusable. To establish each and
every single substitution instance would require proving ‘Fa’, ‘Fb’, . . ., ‘Fj2’,
. . ., ‘Fr79002’, . . ., and so on. Indeed, since there are infinitely many names
in FOL, this process would never come to an end. So we could never apply
that rule. We need to be a bit more cunning in coming up with our rule for
introducing universal quantification.

Our cunning thought will be inspired by considering:

∀xFx .˙. ∀yFy

This argument should obviously be valid. After all, alphabetical variation ought
to be a matter of taste, and of no logical consequence. But how might our proof
system reflect this? Suppose we begin a proof thus:

1 ∀xFx

2 Fa ∀E 1

We have proved ‘Fa’. And, of course, nothing stops us from using the same
justification to prove ‘Fb’, ‘Fc’, . . ., ‘Fj2’, . . ., ‘Fr79002, . . ., and so on until we
run out of space, time, or patience. But reflecting on this, we see that there is a
way to prove F c, for any name c. And if we can do it for any thing, we should
surely be able to say that ‘F ’ is true of everything. This therefore justifies us
in inferring ‘∀yFy’, thus:

1 ∀xFx

2 Fa ∀E 1

3 ∀yFy ∀I 2
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The crucial thought here is that ‘a’ was just some arbitrary name. There
was nothing special about it—we might have chosen any other name—and
still the proof would be fine. And this crucial thought motivates the universal
introduction rule (∀I):

m A(. . . c . . . c . . .)

∀xA(. . . x . . . x . . .) ∀I m

c must not occur in any undischarged assumption
x must not occur in A(. . . c . . . c . . .)

A crucial aspect of this rule, though, is bound up in the first constraint. This
constraint ensures that we are always reasoning at a sufficiently general level.1

To see the constraint in action, consider this terrible argument:

Everyone loves Kylie Minogue; therefore everyone loves themselves.

We might symbolise this obviously invalid inference pattern as:

∀xLxk .˙. ∀xLxx

Now, suppose we tried to offer a proof that vindicates this argument:

1 ∀xLxk

2 Lkk ∀E 1

3 ∀xLxx naughtily attempting to invoke ∀I 2

This is not allowed, because ‘k’ occurred already in an undischarged assump-
tion, namely, on line 1. The crucial point is that, if we have made any as-
sumptions about the object we are working with, then we are not reasoning
generally enough to license ∀I.

Although the name may not occur in any undischarged assumption, it may
occur as a discharged assumption. That is, it may occur in a subproof that we
have already closed. For example:

1 Gd

2 Gd R 1

3 Gd → Gd →I 1–2

4 ∀z(Gz → Gz) ∀I 3

This tells us that ‘∀z(Gz → Gz)’ is a theorem. And that is as it should be.

1Recall from §26 that we are treating ‘⊥’ as a canonical contradiction. But if it were
the canonical contradiction as involving some constant, it might interfere with the constraint
mentioned here. To avoid such problems, we shall treat ‘⊥’ as a canonical contradiction that
involves no particular names.
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31.5 Existential elimination

Suppose we know that something is F. The problem is that simply knowing
this does not tell us which thing is F. So it would seem that from ‘∃xFx’ we
cannot immediately conclude ‘Fa’, ‘Fe23’, or any other substitution instance
of the sentence. What can we do?

Suppose we know that something is F, and that everything which is F is G.
In (almost) natural English, we might reason thus:

Since something is F, there is some particular thing which is an F.
We do not know anything about it, other than that it’s an F, but
for convenience, let’s call it ‘obbie’. So: obbie is F. Since everything
which is F is G, it follows that obbie is G. But since obbie is G,
it follows that something is G. And nothing depended on which
object, exactly, obbie was. So, something is G.

We might try to capture this reasoning pattern in a proof as follows:

1 ∃xFx

2 ∀x(Fx → Gx)

3 Fo

4 Fo → Go ∀E 2

5 Go →E 4, 3

6 ∃xGx ∃I 5

7 ∃xGx ∃E 1, 3–6

Breaking this down: we started by writing down our assumptions. At line 3,
we made an additional assumption: ‘Fo’. This was just a substitution instance
of ‘∃xFx’. On this assumption, we established ‘∃xGx’. But note that we
had made no special assumptions about the object named by ‘o’; we had only
assumed that it satisfies ‘Fx’. So nothing depends upon which object it is.
And line 1 told us that something satisfies ‘Fx’. So our reasoning pattern was
perfectly general. We can discharge the specific assumption ‘Fo’, and simply
infer ‘∃xGx’ on its own.

Putting this together, we obtain the existential elimination rule (∃E):

m ∃xA(. . . x . . . x . . .)

i A(. . . c . . . c . . .)

j B

B ∃E m, i–j

c must not occur in any assumption undischarged before line i
c must not occur in ∃xA(. . . x . . . x . . .)
c must not occur in B
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As with universal introduction, the constraints are extremely important. To
see why, consider the following terrible argument:

Tim Button is a lecturer. There is someone who is not a lecturer.
So Tim Button is both a lecturer and not a lecturer.

We might symbolise this obviously invalid inference pattern as follows:

Lb,∃x¬Lx .˙. Lb ∧ ¬Lb

Now, suppose we tried to offer a proof that vindicates this argument:

1 Lb

2 ∃x¬Lx

3 ¬Lb

4 Lb ∧ ¬Lb ∧E 1, 3

5 Lb ∧ ¬Lb naughtily attempting to invoke ∃E 2, 3–4

The last line of the proof is not allowed. The name that we used in our
substitution instance for ‘∃x¬Lx’ on line 3, namely ‘b’, occurs in line 4. And
the following proof would be no better:

1 Lb

2 ∃x¬Lx

3 ¬Lb

4 Lb ∧ ¬Lb ∧E 1, 3

5 ∃x(Lx ∧ ¬Lx) ∃I 4

6 ∃x(Lx ∧ ¬Lx) naughtily attempting to invoke ∃E 2, 3–5

The last line of the proof would still not be allowed. For the name that we used
in our substitution instance for ‘∃x¬Lx’, namely ‘b’, occurs in an undischarged
assumption, namely line 1.

The moral of the story is this. If you want to squeeze information out of an
existential quantifier, choose a new name for your substitution instance. That
way, you can guarantee that you meet all the constraints on the rule for ∃E.

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain why both are incorrect.
Also, provide interpretations which would invalidate the fallacious argument
forms the ‘proofs’ enshrine:

1 ∀xRxx

2 Raa ∀E 1

3 ∀yRay ∀I 2

4 ∀x∀yRxy ∀I 3
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1 ∀x∃yRxy

2 ∃yRay ∀E 1

3 Raa

4 ∃xRxx ∃I 3

5 ∃xRxx ∃E 2, 3–4

B. The following three proofs are missing their citations (rule and line num-
bers). Add them, to turn them into bona fide proofs.

1 ∀x∃y(Rxy ∨Ryx)

2 ∀x¬Rmx

3 ∃y(Rmy ∨Rym)

4 Rma ∨Ram

5 ¬Rma

6 Ram

7 ∃xRxm

8 ∃xRxm

1 ∀x(∃yLxy → ∀zLzx)

2 Lab

3 ∃yLay → ∀zLza

4 ∃yLay

5 ∀zLza

6 Lca

7 ∃yLcy → ∀zLzc

8 ∃yLcy

9 ∀zLzc

10 Lcc

11 ∀xLxx

1 ∀x(Jx → Kx)

2 ∃x∀yLxy

3 ∀xJx

4 ∀yLay

5 Laa

6 Ja

7 Ja → Ka

8 Ka

9 Ka ∧ Laa

10 ∃x(Kx ∧ Lxx)

11 ∃x(Kx ∧ Lxx)

C. In §15 problem part A, we considered fifteen syllogistic figures of Aristotelian
logic. Provide proofs for each of the argument forms. NB: You will find it much
easier if you symbolise (for example) ‘No F is G’ as ‘∀x(Fx → ¬Gx)’.
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D. Aristotle and his successors identified other syllogistic forms which de-
pended upon ‘existential import’. Symbolise each of the following argument
forms in FOL and offer proofs.

• Barbari. Something is H. All G are F. All H are G. So: Some H is F
• Celaront. Something is H. No G are F. All H are G. So: Some H is not

F
• Cesaro. Something is H. No F are G. All H are G. So: Some H is not F.
• Camestros. Something is H. All F are G. No H are G. So: Some H is

not F.
• Felapton. Something is G. No G are F. All G are H. So: Some H is not

F.
• Darapti. Something is G. All G are F. All G are H. So: Some H is F.
• Calemos. Something is H. All F are G. No G are H. So: Some H is not

F.
• Fesapo. Something is G. No F is G. All G are H. So: Some H is not F.
• Bamalip. Something is F. All F are G. All G are H. So: Some H are F.

E. Provide a proof of each claim.

1. ⊢ ∀xFx ∨ ¬∀xFx
2. ⊢ ∀z(Pz ∨ ¬Pz)
3. ∀x(Ax → Bx), ∃xAx ⊢ ∃xBx
4. ∀x(Mx ↔ Nx),Ma ∧ ∃xRxa ⊢ ∃xNx
5. ∀x∀yGxy ⊢ ∃xGxx
6. ⊢ ∀xRxx → ∃x∃yRxy
7. ⊢ ∀y∃x(Qy → Qx)
8. Na → ∀x(Mx ↔ Ma),Ma,¬Mb ⊢ ¬Na
9. ∀x∀y(Gxy → Gyx) ⊢ ∀x∀y(Gxy ↔ Gyx)

10. ∀x(¬Mx ∨ Ljx), ∀x(Bx → Ljx), ∀x(Mx ∨Bx) ⊢ ∀xLjx

F. Write a symbolisation key for the following argument, symbolise it, and
prove it:

There is someone who likes everyone who likes everyone that she
likes. Therefore, there is someone who likes herself.

G. For each of the following pairs of sentences: If they are provably equivalent,
give proofs to show this. If they are not, construct an interpretation to show
that they are not logically equivalent.

1. ∀xPx → Qc, ∀x(Px → Qc)
2. ∀x∀y∀zBxyz,∀xBxxx
3. ∀x∀yDxy, ∀y∀xDxy
4. ∃x∀yDxy, ∀y∃xDxy
5. ∀x(Rca ↔ Rxa), Rca ↔ ∀xRxa

H. For each of the following arguments: If it is valid in FOL, give a proof. If
it is invalid, construct an interpretation to show that it is invalid.

1. ∃y∀xRxy .˙. ∀x∃yRxy
2. ∃x(Px ∧ ¬Qx) .˙. ∀x(Px → ¬Qx)
3. ∀x(Sx → Ta), Sd .˙. Ta
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4. ∀x(Ax → Bx), ∀x(Bx → Cx) .˙. ∀x(Ax → Cx)
5. ∃x(Dx ∨ Ex), ∀x(Dx → Fx) .˙. ∃x(Dx ∧ Fx)
6. ∀x∀y(Rxy ∨Ryx) .˙. Rjj
7. ∃x∃y(Rxy ∨Ryx) .˙. Rjj
8. ∀xPx → ∀xQx,∃x¬Px .˙. ∃x¬Qx
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In this section, we shall add some additional rules to the basic rules of the
previous section. These govern the interaction of quantifiers and negation.

In §14, we noted that ¬∃xA is logically equivalent to ∀x¬A . We shall add
some rules to our proof system that govern this. In particular, we add:

m ∀x ¬A

¬∃xA CQ m

and

m ¬∃xA

∀x ¬A CQ m

Equally, we add:

m ∃x ¬A

¬∀xA CQ m

and

m ¬∀xA

∃x ¬A CQ m

Practice exercises

A. Show that the following are jointly contrary:

1. Sa → Tm, Tm → Sa, Tm ∧ ¬Sa
2. ¬∃xRxa, ∀x∀yRyx
3. ¬∃x∃yLxy, Laa
4. ∀x(Px → Qx), ∀z(Pz → Rz), ∀yPy,¬Qa ∧ ¬Rb
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B. Show that each pair of sentences is provably equivalent:

1. ∀x(Ax → ¬Bx),¬∃x(Ax ∧Bx)
2. ∀x(¬Ax → Bd),∀xAx ∨Bd

C. In §15, I considered what happens when we move quantifiers ‘across’ various
logical operators. Show that each pair of sentences is provably equivalent:

1. ∀x(Fx ∧Ga), ∀xFx ∧Ga
2. ∃x(Fx ∨Ga), ∃xFx ∨Ga
3. ∀x(Ga → Fx), Ga → ∀xFx
4. ∀x(Fx → Ga), ∃xFx → Ga
5. ∃x(Ga → Fx), Ga → ∃xFx
6. ∃x(Fx → Ga), ∀xFx → Ga

NB: the variable ‘x’ does not occur in ‘Ga’.
When all the quantifiers occur at the beginning of a sentence, that sentence

is said to be in prenex normal form. These equivalences are sometimes called
prenexing rules, since they give us a means for putting any sentence into prenex
normal form.
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In §20, I mentioned the philosophically contentious thesis of the identity of
indiscernibles. This is the claim that objects which are indiscernible in every
way are, in fact, identical to each other. I also mentioned that we will not
subscribe to this thesis. It follows that, no matter how much you tell me about
two objects, I cannot prove that they are identical. Unless, of course, you tell
me that the two objects are, in fact, identical. But then the proof will hardly
be very illuminating.

The consequence of this, for our proof system, is that there are no sentences
that do not already contain the identity predicate that could justify the con-
clusion ‘a = b’. This means that the identity introduction rule will not justify
‘a = b’, or any other identity claim containing two different names.

However, every object is identical to itself. No premises, then, are required
in order to conclude that something is identical to itself. So this will be the
identity introduction rule:

c = c =I

Notice that this rule does not require referring to any prior lines of the proof.
For any name c, you can write c = c on any point, with only the =I rule as
justification.

Our elimination rule is more fun. If you have established ‘a = b’, then
anything that is true of the object named by ‘a’ must also be true of the object
named by ‘b’. For any sentence with ‘a’ in it, you can replace some or all of the
occurrences of ‘a’ with ‘b’ and produce an equivalent sentence. For example,
from ‘Raa’ and ‘a = b’, you are justified in inferring ‘Rab’, ‘Rba’ or ‘Rbb’. More
generally:

m a = b

n A(. . . a . . . a . . .)

A(. . . b . . . a . . .) =E m, n

The notation here is as for ∃I. So A(. . . a . . . a . . .) is a formula containing the
name a, and A(. . . b . . . a . . .) is a formula obtained by replacing one or more
instances of the name a with the name b . Lines m and n can occur in either
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order, and do not need to be adjacent, but we always cite the statement of
identity first. Symmetrically, we allow:

m a = b

n A(. . . b . . . b . . .)

A(. . . a . . . b . . .) =E m, n

This rule is sometimes called Leibniz’s Law, after Gottfried Leibniz.
To see the rules in action, we shall prove some quick results. First, we shall

prove that identity is symmetric:

1 a = b

2 a = a =I

3 b = a =E 1, 2

4 a = b → b = a →I 1–3

5 ∀y(a = y → y = a) ∀I 4

6 ∀x∀y(x = y → y = x) ∀I 5

We obtain line 3 by replacing one instance of ‘a’ in line 2 with an instance of
‘b’; this is justified given ‘a = b’.

Second, we shall prove that identity is transitive:

1 a = b ∧ b = c

2 a = b ∧E 1

3 b = c ∧E 1

4 a = c =E 2, 3

5 (a = b ∧ b = c) → a = c →I 1–4

6 ∀z((a = b ∧ b = z) → a = z) ∀I 5

7 ∀y∀z((a = y ∧ y = z) → a = z) ∀I 6

8 ∀x∀y∀z((x = y ∧ y = z) → x = z) ∀I 7

We obtain line 4 by replacing ‘b’ in line 3 with ‘a’; this is justified given ‘a = b’.

Practice exercises

A. Provide a proof of each claim.

1. Pa ∨Qb,Qb → b = c,¬Pa ⊢ Qc
2. m = n ∨ n = o,An ⊢ Am ∨Ao
3. ∀x x = m,Rma ⊢ ∃xRxx
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4. ∀x∀y(Rxy → x = y) ⊢ Rab → Rba
5. ¬∃x¬x = m ⊢ ∀x∀y(Px → Py)
6. ∃xJx, ∃x¬Jx ⊢ ∃x∃y ¬x = y
7. ∀x(x = n ↔ Mx), ∀x(Ox ∨ ¬Mx) ⊢ On
8. ∃xDx, ∀x(x = p ↔ Dx) ⊢ Dp
9. ∃x

[
(Kx ∧ ∀y(Ky → x = y)) ∧Bx

]
,Kd ⊢ Bd

10. ⊢ Pa → ∀x(Px ∨ ¬x = a)

B. Show that the following are provably equivalent:

• ∃x
(
[Fx ∧ ∀y(Fy → x = y)] ∧ x = n

)
• Fn ∧ ∀y(Fy → n = y)

And hence that both have a decent claim to symbolise the English sentence
‘Nick is the F’.

C. In §17, I claimed that the following are logically equivalent symbolisations
of the English sentence ‘there is exactly one F’:

• ∃xFx ∧ ∀x∀y
[
(Fx ∧ Fy) → x = y

]
• ∃x

[
Fx ∧ ∀y(Fy → x = y)

]
• ∃x∀y(Fy ↔ x = y)

Show that they are all provably equivalent. (Hint : to show that three claims
are provably equivalent, it suffices to show that the first proves the second, the
second proves the third and the third proves the first; think about why.)

D. Symbolise the following argument

There is exactly one F. There is exactly one G. Nothing is both F
and G. So: there are exactly two things that are either F or G.

And offer a proof of it.
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As in the case of TFL, I first introduced some rules for FOL as basic (in §31),
and then added some further rules for conversion of quantifiers (in §32). In
fact, the CQ rules should be regarded as derived rules, for they can be derived
from the basic rules of §31. (The point here is as in §30.) Here is a justification
for the first CQ rule:

1 ∀x¬Ax

2 ∃xAx

3 Ac

4 ¬Ac ∀E 1

5 ⊥ ⊥I 3, 4

6 ⊥ ∃E 2, 3–5

7 ¬∃xAx ¬I 2–6

Here is a justification of the second CQ rule:

1 ∃x¬Ax

2 ∀xAx

3 ¬Ac

4 Ac ∀E 2

5 ⊥ ⊥I 4, 3

6 ⊥ ∃E 1, 3–5

7 ¬∀xAx ¬I 2–6

This explains why the CQ rules can be treated as derived. Similar justifications
can be offered for the other two CQ rules.

Practice exercises

A. Offer proofs which justify the addition of the third and fourth CQ rules as
derived rules.
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Proof-theoretic concepts and 35
semantic concepts

We have used two different turnstiles in this book. This:

A1,A2, . . . ,An ⊢ C

means that there is some proof which starts with assumptions A1,A2, . . . ,An

and ends with C (and no undischarged assumptions other than A1,A2, . . . ,An).
This is a proof-theoretic notion.

By contrast, this:
A1,A2, . . . ,An ⊨ C

means that there is no valuation (or interpretation) which makes all of
A1,A2, . . . ,An true and makes C false. This concerns assignments of truth
and falsity to sentences. It is a semantic notion.

I cannot emphasise enough that these are different notions. But I can
emphasise it a bit more: They are different notions.

Once you have internalised this point, continue reading.
Although our semantic and proof-theoretic notions are different, there is a

deep connection between them. To explain this connection, I shall start by
considering the relationship between logical truths and theorems.

To show that a sentence is a theorem, you need only perform a proof.
Granted, it may be hard to produce a twenty line proof, but it is not so hard
to check each line of the proof and confirm that it is legitimate; and if each
line of the proof individually is legitimate, then the whole proof is legitimate.
Showing that a sentence is a logical truth, though, requires reasoning about all
possible interpretations. Given a choice between showing that a sentence is a
theorem and showing that it is a logical truth, it would be easier to show that
it is a theorem.

Contrawise, to show that a sentence is not a theorem is hard. We would
need to reason about all (possible) proofs. That is very difficult. But to show
that a sentence is not a logical truth, you need only construct an interpretation
in which the sentence is false. Granted, it may be hard to come up with the
interpretation; but once you have done so, it is relatively straightforward to
check what truth value it assigns to a sentence. Given a choice between showing
that a sentence is not a theorem and showing that it is not a logical truth, it
would be easier to show that it is not a logical truth.

Fortunately, a sentence is a theorem if and only if it is a logical truth. As
a result, if we provide a proof of A on no assumptions, and thus show that
A is a theorem, we can legitimately infer that A is a logical truth; i.e., ⊨ A .
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Similarly, if we construct a model in which A is false and thus show that it is
not a logical truth, it follows that A is not a theorem.

More generally, we have the following powerful result:

A1,A2, . . . ,An ⊢ B iff A1,A2, . . . ,An ⊨ B

This shows that, whilst provability and entailment are different notions, they
are extensionally equivalent. As such:

• An argument is valid iff the conclusion can be proved from the premises.
• Two sentences are logically equivalent iff they are provably equivalent.
• Sentences are jointly consistent iff they are not jointly contrary.

For this reason, you can pick and choose when to think in terms of proofs and
when to think in terms of valuations/interpretations, doing whichever is easier
for a given task. The table on the next page summarises which is (usually)
easier.

It is intuitive that provability and semantic entailment should agree. But—
let me repeat this—do not be fooled by the similarity of the symbols ‘⊨’ and ‘⊢’.
These two symbols have very different meanings. And the fact that provability
and semantic entailment agree is not an easy result to come by.

In fact, demonstrating that provability and semantic entailment agree is,
very decisively, the point at which introductory logic becomes intermediary
logic. Agreement, in the case of TFL, is covered in the sequel to this book,
Metatheory, which is the textbook for (part of) the second-year Logic paper.
Agreement, in the case of FOL, is one of the first big results from the third-year
Mathematical Logic paper.
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Symbolic notation A

A.1 Alternative nomenclature

Truth-functional logic. TFL goes by other names. Sometimes it is called
sentence logic, because it deals fundamentally with sentences. Sometimes it is
called propositional logic, on the idea that it deals fundamentally with propo-
sitions. I have stuck with truth-functional logic, to emphasise the fact that
it deals only with assignments of truth and falsity to sentences, and that its
connectives are all truth-functional.

First-order logic. FOL goes by other names. Sometimes it is called predi-
cate logic, because it allows us to apply predicates to objects. Sometimes it is
called quantified logic, because it makes use of quantifiers.

Formulas. Some texts call formulas well-formed formulas. Since ‘well-formed
formula’ is such a long and cumbersome phrase, they then abbreviate this as
wff. This is both barbarous and unnecessary (such texts do not countenance
‘ill-formed formulas’). I have stuck with ‘formula’.

In §6, I defined sentences of TFL. These are also sometimes called ‘formulas’
(or ‘well-formed formulas’) since in TFL, unlike FOL, there is no distinction
between a formula and a sentence.

Valuations. Some texts call valuations truth-assignments.

Expressive adequacy. Some texts describe TFL as truth-functionally com-
plete, rather than expressively adequate.

n-place predicates. I have called predicates ‘one-place’, ‘two-place’, ‘three-
place’, etc. Other texts respectively call them ‘monadic’, ‘dyadic’, ‘triadic’, etc.
Still other texts call them ‘unary’, ‘binary’, ‘trinary’, etc.

Names. In FOL, I have used ‘a’, ‘b’, ‘c’, for names. Some texts call these
‘constants’. Other texts do not mark any difference between names and vari-
ables in the syntax. Those texts focus simply on whether the symbol occurs
bound or unbound.

Domains. Some texts describe a domain as a ‘domain of discourse’, or a
‘universe of discourse’.
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A.2 Alternative symbols

In the history of formal logic, different symbols have been used at different
times and by different authors. Often, authors were forced to use notation
that their printers could typeset.

This appendix presents some common symbols, so that you can recognise
them if you encounter them in an article or in another book.

Negation. Two commonly used symbols are the hoe, ‘¬’, and the swung
dash, ‘∼.’ In some more advanced formal systems it is necessary to distinguish
between two kinds of negation; the distinction is sometimes represented by
using both ‘¬’ and ‘∼’. Some texts use ‘x ̸= y’ to abbreviate ‘¬x = y’.

Disjunction. The symbol ‘∨’ is typically used to symbolize inclusive disjunc-
tion. One etymology is from the Latin word ‘vel’, meaning ‘or’.

Conjunction. Conjunction is often symbolized with the ampersand, ‘&’.
The ampersand is a decorative form of the Latin word ‘et’, which means ‘and’.
(Its etymology still lingers in certain fonts, particularly in italic fonts; thus an
italic ampersand might appear as ‘& ’.) Using this symbol is not recommended,
since it is commonly used in natural English writing (e.g. ‘Smith & Sons’). As
a symbol in a formal system, the ampersand is not the English word ‘&’, so
it is much neater to use a completely different symbol. The most common
choice now is ‘∧’, which is a counterpart to the symbol used for disjunction.
Sometimes a single dot, ‘•’, is used. In some older texts, there is no symbol for
conjunction at all; ‘A and B’ is simply written ‘AB’.

Material Conditional. There are two common symbols for the material
conditional: the arrow, ‘→’, and the hook, ‘⊃’.

Material Biconditional. The double-headed arrow, ‘↔’, is used in systems
that use the arrow to represent the material conditional. Systems that use the
hook for the conditional typically use the triple bar, ‘≡’, for the biconditional.

Quantifiers. The universal quantifier is typically symbolised as a rotated
‘A’, and the existential quantifier as a rotated, ‘E’. In some texts, there is
no separate symbol for the universal quantifier. Instead, the variable is just
written in parentheses in front of the formula that it binds. For example, they
might write ‘(x)Px’ where we would write ‘∀xPx’.

These alternative typographies are summarised below:

negation ¬, ∼
conjunction ∧, &, •

disjunction ∨
conditional →, ⊃

biconditional ↔, ≡
universal quantifier ∀x, (x)



Alternative proof systems B

In formulating my natural deduction system, I treated certain rules of natural
deduction as basic, and others as derived. However, I could equally well have
taken various different rules as basic or derived. I shall illustrate this point
by considering some alternative treatments of disjunction, negation, and the
quantifiers. I shall also explain why I have made the choices that I have.

B.1 Alternative disjunction elimination

Some systems take DS as their basic rule for disjunction elimination. Such
systems can then treat the ∨E rule as a derived rule. For they might offer the
following proof scheme:

m A ∨ B

i A

j C

k B

l C

n A → C →I i–j

n + 1 B → C →I k–l

n + 2 C

n + 3 C R n + 2

n + 4 ¬C

n + 5 A

n + 6 C →E n, n + 5

n + 7 ⊥ ⊥I n + 6, n + 4

n + 8 ¬A ¬I n + 5–n + 7

n + 9 B DS m, n + 8

n + 10 C →E n + 1, n + 9

n + 11 C TND n + 2–n + 3, n + 4–n + 10
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B. Alternative proof systems 166

So why did I choose to take ∨E as basic, rather than DS?1 My reasoning is
that DS involves the use of ‘¬’ in the statement of the rule. It is in some
sense ‘cleaner’ for our disjunction elimination rule to avoid mentioning other
connectives.

B.2 Alternative negation rules

Some systems take the following rule as their basic negation introduction rule:

m A

n− 1 B

n ¬B

¬A ¬I* m–n

and the following as their basic negation elimination rule:

m ¬A

n− 1 B

n ¬B

A ¬E* m–n

Using these two rules, we could have derived all of the rules governing negation
and contradiction that we have taken as basic (i.e. ⊥I, ⊥E, ¬I and TND).
Indeed, we could have avoided all use of the symbol ‘⊥’ altogether. Negation
would have had a single introduction and elimination rule, and would have
behaved much more like the other connectives.

The resulting system would have had fewer rules than ours. So why did I
chose to separate out contradiction, and to use an explicit rule TND?2

My first reason is that adding the symbol ‘⊥’ to our natural deduction
system makes proofs considerably easier to work with.

My second reason is that a lot of fascinating philosophical discussion has
focussed on the acceptability or otherwise of tertium non datur (i.e. TND)
and ex falso quodlibet (i.e. ⊥E). By treating these as separate rules in the
proof system, we will be in a better position to engage with that philosophical
discussion. In particular: having invoked these rules explicitly, it will be much
easier for us to know what a system which lacked these rules would look like.

B.3 Alternative quantification rules

An alternative approach to the quantifiers is to take as basic the rules for ∀I
and ∀E from §31, and also two CQ rule which allow us to move from ∀x ¬A to
¬∃xA and vice versa.3

1P.D. Magnus’s original version of this book went the other way.
2Again, P.D. Magnus’s original version of this book went the other way.
3Warren Goldfarb follows this line in Deductive Logic, 2003, Hackett Publishing Co.
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Taking only these rules as basic, we could have derived the ∃I and ∃E rules
provided in §31. To derive the ∃I rule is fairly simple. Suppose A contains the
name c, and contains no instances of the variable x , and that we want to do
the following:

m A(. . . c . . . c . . .)

k ∃xA(. . . x . . . c . . .)

This is not yet permitted, since in this new system, we do not have the ∃I rule.
We can, however, offer the following:

m A(. . . c . . . c . . .)

m + 1 ¬∃xA(. . . x . . . c . . .)

m + 2 ∀x ¬A(. . . x . . . c . . .) CQ m + 1

m + 3 ¬A(. . . c . . . c . . .) ∀E m + 2

m + 4 ⊥ ⊥I m, m + 3

m + 5 ¬¬∃xA(. . . x . . . c . . .) ¬I m + 1–m + 4

m + 6 ∃xA(. . . x . . . c . . .) DNE m + 5

To derive the ∃E rule is rather more subtle. This is because the ∃E rule has an
important constraint (as, indeed, does the ∀I rule), and we need to make sure
that we are respecting it. So, suppose we are in a situation where we want to
do the following:

m ∃xA(. . . x . . . x . . .)

i A(. . . c . . . c . . .)

j B

k B

where c does not occur in any undischarged assumptions, or in B , or in
∃xA(. . . x . . . x . . .). Ordinarily, we would be allowed to use the ∃E rule; but
we are not here assuming that we have access to this rule as a basic rule.
Nevertheless, we could offer the following, more complicated derivation:
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m ∃xA(. . . x . . . x . . .)

i A(. . . c . . . c . . .)

j B

k A(. . . c . . . c . . .) → B →I i–j

k + 1 ¬B

k + 2 ¬A(. . . c . . . c . . .) MT k, k + 1

k + 3 ∀x ¬A(. . . x . . . x . . .) ∀I k + 2

k + 4 ¬∃xA(. . . x . . . x . . .) CQ k + 3

k + 5 ⊥ ⊥I m, k + 4

k + 6 ¬¬B ¬I k + 1–k + 5

k + 7 B DNE k + 6

We are permitted to use ∀I on line k + 3 because c does not occur in any
undischarged assumptions or in B . The entries on lines k+4 and k+1 contradict
each other, because c does not occur in ∃xA(. . . x . . . x . . .).

Armed with these derived rules, we could now go on to derive the two
remaining CQ rules, exactly as in §34.

So, why did I start with all of the quantifier rules as basic, and then derive
the CQ rules?

My first reason is that it seems more intuitive to treat the quantifiers as on
a par with one another, giving them their own basic rules for introduction and
elimination.

My second reason relates to the discussion of alternative negation rules. In
the derivations of the rules of ∃I and ∃E that I have offered in this section, I
invoked DNE. This is a derived rule, whose derivation essentially depends upon
the use of TND. But, as I mentioned earlier, TND is a contentious rule. So,
if we want to move to a system which abandons TND, but which still allows
us to use existential quantifiers, we shall want to take the introduction and
elimination rules for the quantifiers as basic, and take the CQ rules as derived.
(Indeed, in a system without TND, we shall be unable to derive the CQ rule
which moves from ¬∀xA to ∃x ¬A .)



Quick reference C

C.1 Characteristic Truth Tables

A ¬A
T F
F T

A B A ∧ B A ∨ B A → B A ↔ B
T T T T T T
T F F T F F
F T F T T F
F F F F T T

C.2 Symbolisation

Sentential Connectives

It is not the case that P ¬P
Either P, or Q (P ∨Q)

Neither P, nor Q ¬(P ∨Q) or (¬P ∧ ¬Q)
Both P, and Q (P ∧Q)

If P, then Q (P → Q)
P only if Q (P → Q)

P if and only if Q (P ↔ Q)
P unless Q (P ∨Q)

Predicates

All Fs are Gs ∀x(Fx → Gx)
Some Fs are Gs ∃x(Fx ∧Gx)

Not all Fs are Gs ¬∀x(Fx → Gx) or ∃x(Fx ∧ ¬Gx)
No Fs are Gs ∀x(Fx → ¬Gx) or ¬∃x(Fx ∧Gx)

Identity

Only c is G ∀x(Gx ↔ x = c)
Everything besides c is G ∀x(¬x = c → Gx)

The F is G ∃x(Fx ∧ ∀y(Fy → x = y) ∧Gx)
It is not the case that the F is G ¬∃x(Fx ∧ ∀y(Fy → x = y) ∧Gx)

The F is non-G ∃x(Fx ∧ ∀y(Fy → x = y) ∧ ¬Gx)
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C.3 Using identity to symbolize quantities

There are at least Fs.

one: ∃xFx
two: ∃x1∃x2(Fx1 ∧ Fx2 ∧ ¬x1 = x2)

three: ∃x1∃x2∃x3(Fx1 ∧ Fx2 ∧ Fx3 ∧ ¬x1 = x2 ∧ ¬x1 = x3 ∧ ¬x2 = x3)
four: ∃x1∃x2∃x3∃x4(Fx1 ∧ Fx2 ∧ Fx3 ∧ Fx4 ∧

¬x1 = x2∧¬x1 = x3∧¬x1 = x4∧¬x2 = x3∧¬x2 = x4∧¬x3 = x4)
n: ∃x1 . . .∃xn(Fx1 ∧ . . . ∧ Fxn ∧ ¬x1 = x2 ∧ . . . ∧ ¬xn−1 = xn)

There are at most Fs.

One way to say ‘there are at most n Fs’ is to put a negation sign in front of
the symbolisation for ‘there are at least n + 1 Fs’. Equivalently, we can offer:

one: ∀x1∀x2

[
(Fx1 ∧ Fx2) → x1 = x2

]
two: ∀x1∀x2∀x3

[
(Fx1 ∧ Fx2 ∧ Fx3) → (x1 = x2 ∨ x1 = x3 ∨ x2 = x3)

]
three: ∀x1∀x2∀x3∀x4

[
(Fx1 ∧ Fx2 ∧ Fx3 ∧ Fx4) →

(x1 = x2 ∨ x1 = x3 ∨ x1 = x4 ∨ x2 = x3 ∨ x2 = x4 ∨ x3 = x4)
]

n: ∀x1 . . .∀xn+1

[
(Fx1 ∧ . . . ∧ Fxn+1) → (x1 = x2 ∨ . . . ∨ xn = xn+1)

]
There are exactly Fs.

One way to say ‘there are exactly n Fs’ is to conjoin two of the symbolizations
above and say ‘there are at least n Fs and there are at most n Fs.’ The following
equivalent formulae are shorter:

zero: ∀x¬Fx
one: ∃x

[
Fx ∧ ∀y(Fy → x = y)

]
two: ∃x1∃x2

[
Fx1 ∧ Fx2 ∧ ¬x1 = x2 ∧ ∀y

(
Fy → (y = x1 ∨ y = x2)

)]
three: ∃x1∃x2∃x3

[
Fx1 ∧ Fx2 ∧ Fx3 ∧ ¬x1 = x2 ∧ ¬x1 = x3 ∧ ¬x2 = x3 ∧

∀y
(
Fy → (y = x1 ∨ y = x2 ∨ y = x3)

)]
n: ∃x1 . . .∃xn

[
Fx1 ∧ . . . ∧ Fxn ∧ ¬x1 = x2 ∧ . . . ∧ ¬xn−1 = xn ∧

∀y
(
Fy → (y = x1 ∨ . . . ∨ y = xn)

)]
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C.4 Basic deduction rules for TFL

Conjunction

m A

n B

A ∧ B ∧I m, n

m A ∧ B

A ∧E m

m A ∧ B

B ∧E m

Conditional

i A

j B

A → B →I i–j

m A → B

n A

B →E m, n

Contradiction

m A

n ¬A

⊥ ⊥I m, n

m ⊥

A ⊥E m

Negation

i A

j ⊥

¬A ¬I i–j

Tertium non datur

i A

j B

k ¬A

l B

B TND i–j, k–l

Disjunction

m A

A ∨ B ∨I m

m A

B ∨ A ∨I m

m A ∨ B

i A

j C

k B

l C

C ∨E m, i–j, k–l

Biconditional

i A

j B

k B

l A

A ↔ B ↔I i–j, k–l

m A ↔ B

n A

B ↔E m, n

m A ↔ B

n B

A ↔E m, n



C. Quick reference 172

C.5 Derived rules for TFL

Disjunctive syllogism

m A ∨ B

n ¬A

B DS m, n

m A ∨ B

n ¬B

A DS m, n

Reiteration

m A

A R m

Modus Tollens

m A → B

n ¬B

¬A MT m, n

Double-negation elimination

m ¬¬A

A DNE m

De Morgan Rules

m ¬(A ∨ B)

¬A ∧ ¬B DeM m

m ¬A ∧ ¬B

¬(A ∨ B) DeM m

m ¬(A ∧ B)

¬A ∨ ¬B DeM m

m ¬A ∨ ¬B

¬(A ∧ B) DeM m
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C.6 Basic deduction rules for FOL

Universal elimination

m ∀xA(. . . x . . . x . . .)

A(. . . c . . . c . . .) ∀E m

Universal introduction

m A(. . . c . . . c . . .)

∀xA(. . . x . . . x . . .) ∀I m

c must not occur in any undischarged
assumption
x must not occur in A(. . . c . . . c . . .)

Existential introduction

m A(. . . c . . . c . . .)

∃xA(. . . x . . . c . . .) ∃I m
x must not occur in A(. . . c . . . c . . .)

Existential elimination

m ∃xA(. . . x . . . x . . .)

i A(. . . c . . . c . . .)

j B

B ∃E m, i–j

c must not occur in any undischarged
assumption, in ∃xA(. . . x . . . x . . .),
or in B

Identity introduction

c = c =I

Identity elimination

m a = b

n A(. . . a . . . a . . .)

A(. . . b . . . a . . .) =E m, n

m a = b

n A(. . . b . . . b . . .)

A(. . . a . . . b . . .) =E m, n

C.7 Derived rules for FOL

m ∀x ¬A

¬∃xA CQ m

m ¬∃xA

∀x ¬A CQ m

m ∃x ¬A

¬∀xA CQ m

m ¬∀xA

∃x ¬A CQ m



In the Introduction to his volume Symbolic Logic,
Charles Lutwidge Dodson advised: “When you
come to any passage you don’t understand, read
it again: if you still don’t understand it, read it
again: if you fail, even after three readings, very
likely your brain is getting a little tired. In that
case, put the book away, and take to other occu-
pations, and next day, when you come to it fresh,
you will very likely find that it is quite easy.”

The same might be said for this volume, although
readers are forgiven if they take a break for snacks
after two readings.

P.D. Magnus is an associate professor of philoso-
phy in Albany, New York. His primary research is
in the philosophy of science.

Tim Button is a University Lecturer, and Fellow
of St John’s College, at the University of Cam-
bridge. His first book, The Limits of Realism, was
published by Oxford University Press in 2013.
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